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Injection Flows G How does it work? G
Telematics Telematics

» Principle:
e Occurs when user supplied data is sent to an interpreter as
part of a command or a query.

» Injection Flows may be done on:
SQL (most common)

» Attacker tricks the interpreter into executing unintended
command
» Attacker supplies unexpected content to a site
e Data is especially designed to fool the site

[ )

e LDAP » Attacker may take control of the interpreter, for
e XPath instance SQL:

o XSLT e Read data (unintended, of course)

e HTML e update, delete or create any arbitrary data

¢ OS Command injection » For the Operating System interpreter

[ ]

e Attacker may have the opportunity to execute any command
» This vulnerability is very common on Web Application
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Vulnerability G Protection 11G

Telematics Telematics

» Environments affected
e Any framework using an interpreter or invoke process
e SQL
¢ Command line » Avoid the use of interpreter if possible
» Otherwise: Use safe APls

e Strongly typed parameterized queries

» System is vulnerable when user input is passed without

tests

PHP e Object Relational Mapping (ORM)
. " They handle data escaping

$query = "select_x_from_guestbook” ;

$query .= " _where__title_like.”" .$_REQUEST['search’]; > Validation is still recommended

$result = mysql_query($query , $conn); e in order to detect attacks

Java

String query = "select_x_from_user_where_username="";
query += req.getParameter(" userID");
query +=""_and_password_=.""+req.getParameter(" pwd" )+"";
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Take Extra Care when using interpreters”G Take Extra Care (Cont.) G

Telematics Telematics

» Input Validation

Validate all input data: length, type, syntax, business rules
validation is done before displaying or storing any data
Validation must be done server-side

Javascript validation doesn't bring any security

» Use strongly typed parameterized query APlIs > Use stored procedures

e They are generally safe from SQL injection

e Can however be injected (for instance using exec())

» Avoid detailed error messages
e Give access to versions numbers
e Give access to parts of the code
e Give access to configurations

e with placeholder substitution markers,

» Enforce least privilege ) )
e Configure your DB such that the web account can't do more > Do not use dynamic query interfaces (such as
than what is expected mysql-query())
e restrict the rights of your user when executing an OS command
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Take Extra Care (Cont.) G

Telematics

» Do not use simple escaping functions
such as
e addslashes() in PHP
e str_replace("’","’’")
e it is weak and has been successfully exploited
> Prefer following methods

e use mysql_real_escape_string()
e or preferably PDO which does not require escaping
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Which site is subject to SQL injection? G

Telematics

v

Such a site must access a DB
e The parameter should be given by the user
e This parameter is then used to select data in the DB
e Example www.mysite.com/index.php?id=100
e Means there exists a request for the page number 100

v

If the site does not test its input

e You can test it by typing something like:
www.mysite.com/index.php?id=%2710

v

If the site lets the user see error messages
e Test the output of your input
Examples

e Search form (SELECT with LIKE)
e Login form (SELECT with two =)
e Insertion of new entries

e ...

v
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Language Specific recommendations G
Telematics

» Java EE
e use strongly typed PreparedStatement
e or use an ORM (Object Relational Manager) such as
Hibernate or Spring
» PHP

e Use PDO with strongly typed parameterized queries (using
bindParam()).
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Example: Presentation G
Telematics

» Suppose we have the following HTML Form

<form method="POST" >
<input type="text” name="username" ><br>
<input type="password” name="password" ><br>
<input type="submit” value="Login" >

< /form>

» and the following PHP line defining a SQL command:

$query = "SELECT _x_.FROM_user_.WHERE_username="$user"";
$query .= " _AND_password="$pwd"";

» For our examples, we disable a security feature from the
php.ini file
(normally this option is on, and it quotes all GET, POST and
COOKIES parameters, means chars like: " and ' are escaped
and become \"” and \')

off
|

c . onc
=) - . .
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Example: Select user and password G

We want the select to work in any case Telematics

» Following expressions are always true

SELECT x FROM table WHERE 1=1;

SELECT % FROM table WHERE 1;

SELECT % FROM table WHERE ISNULL(NULL)

SELECT * FROM table WHERE 1 IS NOT NULL
SELECT x FROM table WHERE NULL IS NULL

» So we do not need a valid username and password
if $user="’> OR ’a’=’a" and $password remains empty then
the previous expression becomes:

SELECT % FROM user WHERE username=""0OR 'a'="a’ AND \
password="";

e Returns the list of all the users
e So we are logged in with the first provided
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Example, using Comments G
Telematics

» Another great principle in SQL injection is Comments
It is also very common in all the other injections

> If we inject a #, the rest of the SQL expression is not
evaluated
if $user="John’ #" the request becomes
SELECT % FROM user WHERE username="John’'#’'_AND_password=""
which is equal to
SELECT % FROM user WHERE username='"John’

> If we use the comments /* comments */ we may escape
some tests
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Login on a specific account G
Telematics

» We can specify the right username and change the
password

e If we give $user="Emmanuel"
e And $password="’> OR ’b’ BETWEEN ’a’ AND ’c"

» The previous SQL statement becomes

SELECT * FROM user WHERE username='Emmanuel’ AND \
password=""OR 'b’ BETWEEN ’'a’ AND 'c"’;

> So username is OK, but password is not checked!
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More injection in SELECT 11G

Telematics

content of one single comment in our guestbook:

$query = "select_x_from_guestbook_where_guestbooklD=$number”

» We can copy the content in a file
e suppose we define
$number="11 or 1=1 INTO OUTFILE
’/tmp/test.security.txt’"
e The total content of the table is sent to a file.

» Suppose the Attacker has an account on the system
(e.g. foobar).

e |t is possible to change the password of foobar
e If we can write the following query:

SELECT password FROM user WHERE login="foobar’ INTO OUTFILE\
' Jopt/lampp/htdocs/test.php’
» Attacker could create any php file inside the system!!
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Example: INSERT INTO G

Telematics

» Attacker can also manipulate INSERT INTO queries
e Use the knowledge of the DB to input unsolicited data
» Example: Suppose we have a table user:

e userID (auto—increment), username, password, email
userlevel

» We have a register procedure containing following query

$query = "INSERT_INTO_user_(username,password,email,userlevel)
$query .= " _VALUES_('$username’,'$password’,'$Semail’,’1’)"

» Suppose we give the value $email="",’3)#"

e Element is inserted with privilege "3" (= admin) whereas he
should be only "1" (= user).

Web Security, Summer Term 2012 6) Injection Flows 17

Example UPDATE (Cont.) G

Telematics

» Suppose we have a table for news. Visitors can give a
note to each news.

e We have the following table news:

newsID, title, content, votes (number), score (number)
e The following query is used to count one vote:

UPDATE news SET votes=votes+1, score=score+$note WHERE\
newsID="$id’

e We have the following attack

$note="3,_title="hop’

» Why is this interesting?

e Attacking numbers doesn't require ' or’
e Is compatible with magic_quotes_gpc = on
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Example: UPDATE G

Telematics

» Suppose we have the possibility to change the password
of one user

UPDATE ‘user' SET ‘password’ = "$pwdl’ WHERE ‘userID' =\
"Suid’ LIMIT 1;
» We could also change the level of the user
$pwdl = "mypwd’,_userlevel='3";
Which creates the following request:

UPDATE ‘user' SET ‘password’ = 'mypwd’, userlevel="3" WHERE)\
‘userlD* ='$uid’ LIMIT 1,

» Or change the password of any other user
$pwdl = "mypwd’ WHERE_user|D_=_10#";
Which creates the following request:
UPDATE ‘user’ SET ‘password’ = 'mypwd’ WHERE userID = 10
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Example : UNION ALL ”G
Telematics

» UNION ALL is used to concatenate two queries

e Written at the end of a select query, concatenates the two
results

select name, price from article where price>10 union all \
select username, password from user;

» Taken as one result set in programming languages

e UNION ALL is transparent for the program

e works exactly as if the select was normal

e The two selects need to have the same number of columns
» Example in the Guestbook

e Insert this instructions inside the search area
e Done in Exercise
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Attacks using no quotes G
Telematics

> Since most of the server have magic_quotes_gpc = on

1

e Attackers can not use ' or’

» Use MySQL char() function

e Returns the character denoted by the number,
e For instance char(104,111,112) returns the string hop

» Previous attack becomes
e The following query is used to count one vote:

UPDATE news SET votes=votes+1, score=score+$note WHERE\
news|D="$id’

e We have the following attack

$note="3, title=char(104,111,112)
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Conclusion G

Telematics

v

SQL Injection allows attacker to
e Read data: Access passwords, data stored
e Change Data : Access security level
e Delete data
[ )

v

SQL injection Vulnerabilities opens the door to:

Privacy breach : Data can be accessed without consent
Identity theft : idem + failure in authentication
Compromission of the system : write of new files (maybe PHP)

» Easy protection are already exploited
e Adding one (or more) layers between presentation and
database layer is a must (also from the point of view of Design)
e Even this has also been successfully exploited.

v

Solution? test your inputs!
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How to protect yourself G
From SQL injection in PHP Telematics

» Configure PHP such that " and ” are automatically
escaped

magic_quotes_gpc = on

» Always quote input before sending query to an
interpreter

e mysql_real_escape_string()
» Do not use any interpreter at all
e Use PDO
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