
IIG University of Freiburg

Web Security, Summer Term 2012

Injection Flows

Dr. E. Benoist

Sommer Semester

Web Security, Summer Term 2012 6) Injection Flows 1

Table of Contents

� Presentation

� Vulnerability

� Protection

� Examples

� Conclusion

Web Security, Summer Term 2012 6) Injection Flows 2

Injection Flows

I Principle:
• Occurs when user supplied data is sent to an interpreter as

part of a command or a query.

I Injection Flows may be done on:
• SQL (most common)
• LDAP
• XPath
• XSLT
• HTML
• OS Command injection
• . . .

I This vulnerability is very common on Web Application

Web Security, Summer Term 2012 6) Injection Flows 3

How does it work?

I Attacker tricks the interpreter into executing unintended
command

I Attacker supplies unexpected content to a site
• Data is especially designed to fool the site

I Attacker may take control of the interpreter, for
instance SQL:
• Read data (unintended, of course)
• update, delete or create any arbitrary data

I For the Operating System interpreter
• Attacker may have the opportunity to execute any command

Web Security, Summer Term 2012 6) Injection Flows 4

Vulnerability

I Environments affected
• Any framework using an interpreter or invoke process
• SQL
• Command line
• . . .

I System is vulnerable when user input is passed without
tests
PHP

$query = ”select ∗ from guestbook”;
$query .= ” where title like ’”.$ REQUEST[’search’];
$result = mysql query($query , $conn);

Java

String query = ”select ∗ from user where username=’”;
query += req.getParameter(”userID”);
query += ”’ and password = ’”+req.getParameter(”pwd”)+”’”;

Web Security, Summer Term 2012 6) Injection Flows 5

Protection

I Avoid the use of interpreter if possible
I Otherwise: Use safe APIs

• Strongly typed parameterized queries
• Object Relational Mapping (ORM)

They handle data escaping
I Validation is still recommended

• in order to detect attacks

Web Security, Summer Term 2012 6) Injection Flows 6

Take Extra Care when using interpreters

I Input Validation
• Validate all input data: length, type, syntax, business rules
• validation is done before displaying or storing any data
• Validation must be done server-side
• Javascript validation doesn’t bring any security

I Use strongly typed parameterized query APIs
• with placeholder substitution markers,

I Enforce least privilege
• Configure your DB such that the web account can’t do more

than what is expected
• restrict the rights of your user when executing an OS command

Web Security, Summer Term 2012 6) Injection Flows 7

Take Extra Care (Cont.)

I Avoid detailed error messages
• Give access to versions numbers
• Give access to parts of the code
• Give access to configurations

I Use stored procedures
• They are generally safe from SQL injection
• Can however be injected (for instance using exec())

I Do not use dynamic query interfaces (such as
mysql query())

Web Security, Summer Term 2012 6) Injection Flows 8

Take Extra Care (Cont.)

I Do not use simple escaping functions
such as

• addslashes() in PHP
• str replace("’","’’")
• it is weak and has been successfully exploited

I Prefer following methods
• use mysql real escape string()
• or preferably PDO which does not require escaping

Web Security, Summer Term 2012 6) Injection Flows 9

Language Specific recommendations

I Java EE
• use strongly typed PreparedStatement
• or use an ORM (Object Relational Manager) such as

Hibernate or Spring

I PHP
• Use PDO with strongly typed parameterized queries (using
bindParam()).

Web Security, Summer Term 2012 6) Injection Flows 10

Which site is subject to SQL injection?

I Such a site must access a DB
• The parameter should be given by the user
• This parameter is then used to select data in the DB
• Example www.mysite.com/index.php?id=100
• Means there exists a request for the page number 100

I If the site does not test its input
• You can test it by typing something like:
www.mysite.com/index.php?id=%2710

I If the site lets the user see error messages
• Test the output of your input

I Examples
• Search form (SELECT with LIKE)
• Login form (SELECT with two =)
• Insertion of new entries
• . . .

Web Security, Summer Term 2012 6) Injection Flows 11

Example: Presentation

I Suppose we have the following HTML Form

<form method=”POST”>
<input type=”text” name=”username”>

<input type=”password” name=”password”>

<input type=”submit” value=”Login”>

</form>

I and the following PHP line defining a SQL command:

$query = ”SELECT ∗ FROM user WHERE username=’$user’”;
$query .= ” AND password=’$pwd’”;

I For our examples, we disable a security feature from the
php.ini file
(normally this option is on, and it quotes all GET, POST and
COOKIES parameters, means chars like: ” and ’ are escaped
and become \” and \’)
magic quotes gpc = off

Web Security, Summer Term 2012 6) Injection Flows 12

Example: Select user and password
We want the select to work in any case

I Following expressions are always true

SELECT ∗ FROM table WHERE 1=1;
SELECT ∗ FROM table WHERE 1;
SELECT ∗ FROM table WHERE ISNULL(NULL)
SELECT ∗ FROM table WHERE 1 IS NOT NULL
SELECT ∗ FROM table WHERE NULL IS NULL
...

I So we do not need a valid username and password
if $user="’ OR ’a’=’a" and $password remains empty then
the previous expression becomes:

SELECT ∗ FROM user WHERE username=’’ OR ’a’=’a’ AND \
password=’’”;

• Returns the list of all the users
• So we are logged in with the first provided

Web Security, Summer Term 2012 6) Injection Flows 13

Login on a specific account

I We can specify the right username and change the
password
• If we give $user="Emmanuel"
• And $password="’ OR ’b’ BETWEEN ’a’ AND ’c"

I The previous SQL statement becomes

SELECT ∗ FROM user WHERE username=’Emmanuel’ AND \
password=’’ OR ’b’ BETWEEN ’a’ AND ’c’”;

I So username is OK, but password is not checked!

Web Security, Summer Term 2012 6) Injection Flows 14

Example, using Comments

I Another great principle in SQL injection is Comments
It is also very common in all the other injections

I If we inject a #, the rest of the SQL expression is not
evaluated
if $user="John’ #" the request becomes

SELECT ∗ FROM user WHERE username=’John’#’ AND password=’’

which is equal to

SELECT ∗ FROM user WHERE username=’John’

I If we use the comments /* comments */ we may escape
some tests

Web Security, Summer Term 2012 6) Injection Flows 15

More injection in SELECT

I Suppose we have the following query, for displaying the
content of one single comment in our guestbook:

$query = ”select ∗ from guestbook where guestbookID=$number”;

I We can copy the content in a file
• suppose we define
$number="11 or 1=1 INTO OUTFILE
’/tmp/test.security.txt’"

• The total content of the table is sent to a file.
I Suppose the Attacker has an account on the system

(e.g. foobar).
• It is possible to change the password of foobar
• If we can write the following query:

SELECT password FROM user WHERE login=’foobar’ INTO OUTFILE\
’/opt/lampp/htdocs/test.php’

I Attacker could create any php file inside the system!!

Web Security, Summer Term 2012 6) Injection Flows 16

Example: INSERT INTO

I Attacker can also manipulate INSERT INTO queries
• Use the knowledge of the DB to input unsolicited data

I Example: Suppose we have a table user:
• userID (auto-increment), username, password, email
userlevel

I We have a register procedure containing following query

$query = ”INSERT INTO user (username,password,email,userlevel)”;
$query .= ” VALUES (’$username’,’$password’,’$email’,’1’)”

I Suppose we give the value $email="’,’3)#"
• Element is inserted with privilege ”3” (= admin) whereas he

should be only ”1” (= user).

Web Security, Summer Term 2012 6) Injection Flows 17

Example: UPDATE

I Suppose we have the possibility to change the password
of one user

UPDATE ‘user‘ SET ‘password‘ = ’$pwd1’ WHERE ‘userID‘ =\
’$uid’ LIMIT 1;

I We could also change the level of the user

$pwd1 = ”mypwd’, userlevel=’3”;

Which creates the following request:

UPDATE ‘user‘ SET ‘password‘ = ’mypwd’, userlevel=’3’ WHERE\
‘userID‘ =’$uid’ LIMIT 1;

I Or change the password of any other user

$pwd1 = ”mypwd’ WHERE userID = 10#”;

Which creates the following request:

UPDATE ‘user‘ SET ‘password‘ = ’mypwd’ WHERE userID = 10

Web Security, Summer Term 2012 6) Injection Flows 18

Example UPDATE (Cont.)

I Suppose we have a table for news. Visitors can give a
note to each news.

• We have the following table news:
newsID, title, content, votes (number), score (number)

• The following query is used to count one vote:

UPDATE news SET votes=votes+1, score=score+$note WHERE\
newsID=’$id’

,
• We have the following attack

$note=”3, title=’hop’

I Why is this interesting?
• Attacking numbers doesn’t require ’ or ”
• Is compatible with magic_quotes_gpc = on

Web Security, Summer Term 2012 6) Injection Flows 19

Example : UNION ALL

I UNION ALL is used to concatenate two queries
• Written at the end of a select query, concatenates the two

results

select name, price from article where price>10 union all \
select username, password from user;

I Taken as one result set in programming languages
• UNION ALL is transparent for the program
• works exactly as if the select was normal
• The two selects need to have the same number of columns

I Example in the Guestbook
• Insert this instructions inside the search area
• Done in Exercise

Web Security, Summer Term 2012 6) Injection Flows 20

Attacks using no quotes

I Since most of the server have magic quotes gpc = on
• Attackers can not use ’ or ”

I Use MySQL char() function
• Returns the character denoted by the number,
• For instance char(104,111,112) returns the string hop

I Previous attack becomes

• The following query is used to count one vote:

UPDATE news SET votes=votes+1, score=score+$note WHERE\
newsID=’$id’

,
• We have the following attack

$note=”3, title=char(104,111,112)

Web Security, Summer Term 2012 6) Injection Flows 21

How to protect yourself
From SQL injection in PHP

I Configure PHP such that ’ and ” are automatically
escaped

magic quotes gpc = on

I Always quote input before sending query to an
interpreter
• mysql real escape string()

I Do not use any interpreter at all
• Use PDO

Web Security, Summer Term 2012 6) Injection Flows 22

Conclusion

I SQL Injection allows attacker to
• Read data: Access passwords, data stored
• Change Data : Access security level
• Delete data
•

I SQL injection Vulnerabilities opens the door to:
• Privacy breach : Data can be accessed without consent
• Identity theft : idem + failure in authentication
• Compromission of the system : write of new files (maybe PHP)
• . . .

I Easy protection are already exploited
• Adding one (or more) layers between presentation and

database layer is a must (also from the point of view of Design)
• Even this has also been successfully exploited.

I Solution? test your inputs!

Web Security, Summer Term 2012 6) Injection Flows 23

References

I OWASP Top 10 - 2007
http://www.owasp.org/index.php/Top_10_2007

I A Guide for Building Secure Web Applications and Web
Services
http://www.lulu.com/content/1401012

I Advanced SQL Injection in SQL Server Applications - Chris
Anley
http://www.nextgenss.com/papers/advanced_sql_
injection.pdf

I L’injection (My)SQL via PHP - leseulfrog
http://www.phpsecure.info/v2/article/InjSql.php
Advanced version:
http://www.phpsecure.info/v2/article/phpmysql.php

I SQLMAP (a SQL Injection Tool)
http://sqlmap.sourceforge.net

Web Security, Summer Term 2012 6) Injection Flows 24

