Table of Contents ”G

Telematics
I1G University of Freiburg
B Presentation
Web Security, Summer Term 2012 ®m Vulnerability
Injection Flows B Protection
Dr. E. Benoist B Examples
Sommer Semester m Conclusion
Web Security, Summer Term 2012 6) Injection Flows 1 Web Security, Summer Term 2012 6) Injection Flows 2
Injection Flows G How does it work? G
Telematics Telematics

» Principle:
e Occurs when user supplied data is sent to an interpreter as
part of a command or a query.

» Injection Flows may be done on:
SQL (most common)

» Attacker tricks the interpreter into executing unintended
command
» Attacker supplies unexpected content to a site
e Data is especially designed to fool the site

[)

e LDAP » Attacker may take control of the interpreter, for
e XPath instance SQL:

o XSLT e Read data (unintended, of course)

e HTML e update, delete or create any arbitrary data

¢ OS Command injection » For the Operating System interpreter

[]

e Attacker may have the opportunity to execute any command
» This vulnerability is very common on Web Application

Web Security, Summer Term 2012 6) Injection Flows 3 Web Security, Summer Term 2012 6) Injection Flows 4

Vulnerability G Protection 11G

Telematics Telematics

» Environments affected
e Any framework using an interpreter or invoke process
e SQL
¢ Command line » Avoid the use of interpreter if possible
» Otherwise: Use safe APls

e Strongly typed parameterized queries

» System is vulnerable when user input is passed without

tests

PHP e Object Relational Mapping (ORM)
. " They handle data escaping

$query = "select_x_from_guestbook” ;

$query .= " _where__title_like.”" .$_REQUEST['search’]; > Validation is still recommended

$result = mysql_query($query , $conn); e in order to detect attacks

Java

String query = "select_x_from_user_where_username="";
query += req.getParameter(" userID");
query +=""_and_password_=.""+req.getParameter(" pwd")+"";

Web Security, Summer Term 2012 6) Injection Flows 5 Web Security, Summer Term 2012 6) Injection Flows 6

Take Extra Care when using interpreters”G Take Extra Care (Cont.) G

Telematics Telematics

» Input Validation

Validate all input data: length, type, syntax, business rules
validation is done before displaying or storing any data
Validation must be done server-side

Javascript validation doesn't bring any security

» Use strongly typed parameterized query APlIs > Use stored procedures

e They are generally safe from SQL injection

e Can however be injected (for instance using exec())

» Avoid detailed error messages
e Give access to versions numbers
e Give access to parts of the code
e Give access to configurations

e with placeholder substitution markers,

» Enforce least privilege))
e Configure your DB such that the web account can't do more > Do not use dynamic query interfaces (such as
than what is expected mysql-query())
e restrict the rights of your user when executing an OS command

Web Security, Summer Term 2012 6) Injection Flows 7 Web Security, Summer Term 2012 6) Injection Flows 8

Take Extra Care (Cont.) G

Telematics

» Do not use simple escaping functions
such as
e addslashes() in PHP
e str_replace("’","’’")
e it is weak and has been successfully exploited
> Prefer following methods

e use mysql_real_escape_string()
e or preferably PDO which does not require escaping

Web Security, Summer Term 2012 6) Injection Flows 9

Which site is subject to SQL injection? G

Telematics

v

Such a site must access a DB
e The parameter should be given by the user
e This parameter is then used to select data in the DB
e Example www.mysite.com/index.php?id=100
e Means there exists a request for the page number 100

v

If the site does not test its input

e You can test it by typing something like:
www.mysite.com/index.php?id=%2710

v

If the site lets the user see error messages
e Test the output of your input
Examples

e Search form (SELECT with LIKE)
e Login form (SELECT with two =)
e Insertion of new entries

e ...

v

Web Security, Summer Term 2012 6) Injection Flows 11

Language Specific recommendations G
Telematics

» Java EE
e use strongly typed PreparedStatement
e or use an ORM (Object Relational Manager) such as
Hibernate or Spring
» PHP

e Use PDO with strongly typed parameterized queries (using
bindParam()).

Web Security, Summer Term 2012 6) Injection Flows

Example: Presentation G
Telematics

» Suppose we have the following HTML Form

<form method="POST" >
<input type="text” name="username" >

<input type="password” name="password" >

<input type="submit” value="Login" >

< /form>

» and the following PHP line defining a SQL command:

$query = "SELECT _x_.FROM_user_.WHERE_username="$user"";
$query .= " _AND_password="$pwd"";

» For our examples, we disable a security feature from the
php.ini file
(normally this option is on, and it quotes all GET, POST and
COOKIES parameters, means chars like: " and ' are escaped
and become \"” and \')

off
|

c . onc
=) - . .
6) Injection Flows

10

12

Example: Select user and password G

We want the select to work in any case Telematics

» Following expressions are always true

SELECT x FROM table WHERE 1=1;

SELECT % FROM table WHERE 1;

SELECT % FROM table WHERE ISNULL(NULL)

SELECT * FROM table WHERE 1 IS NOT NULL
SELECT x FROM table WHERE NULL IS NULL

» So we do not need a valid username and password
if $user="’> OR ’a’=’a" and $password remains empty then
the previous expression becomes:

SELECT % FROM user WHERE username=""0OR 'a'="a’ AND \
password="";

e Returns the list of all the users
e So we are logged in with the first provided

Web Security, Summer Term 2012 6) Injection Flows 13

Example, using Comments G
Telematics

» Another great principle in SQL injection is Comments
It is also very common in all the other injections

> If we inject a #, the rest of the SQL expression is not
evaluated
if $user="John’ #" the request becomes
SELECT % FROM user WHERE username="John’'#’'_AND_password=""
which is equal to
SELECT % FROM user WHERE username='"John’

> If we use the comments /* comments */ we may escape
some tests

Web Security, Summer Term 2012 6) Injection Flows 15

Login on a specific account G
Telematics

» We can specify the right username and change the
password

e If we give $user="Emmanuel"
e And $password="’> OR ’b’ BETWEEN ’a’ AND ’c"

» The previous SQL statement becomes

SELECT * FROM user WHERE username='Emmanuel’ AND \
password=""OR 'b’ BETWEEN ’'a’ AND 'c"’;

> So username is OK, but password is not checked!

Web Security, Summer Term 2012

6) Injection Flows 14

More injection in SELECT 11G

Telematics

content of one single comment in our guestbook:

$query = "select_x_from_guestbook_where_guestbooklD=$number”

» We can copy the content in a file
e suppose we define
$number="11 or 1=1 INTO OUTFILE
’/tmp/test.security.txt’"
e The total content of the table is sent to a file.

» Suppose the Attacker has an account on the system
(e.g. foobar).

e |t is possible to change the password of foobar
e If we can write the following query:

SELECT password FROM user WHERE login="foobar’ INTO OUTFILE\
' Jopt/lampp/htdocs/test.php’
» Attacker could create any php file inside the system!!

Web Security, Summer Term 2012 6) Injection Flows 16

Example: INSERT INTO G

Telematics

» Attacker can also manipulate INSERT INTO queries
e Use the knowledge of the DB to input unsolicited data
» Example: Suppose we have a table user:

e userID (auto—increment), username, password, email
userlevel

» We have a register procedure containing following query

$query = "INSERT_INTO_user_(username,password,email,userlevel)
$query .= " _VALUES_('$username’,'$password’,'$Semail’,’1’)"

» Suppose we give the value $email="",’3)#"

e Element is inserted with privilege "3" (= admin) whereas he
should be only "1" (= user).

Web Security, Summer Term 2012 6) Injection Flows 17

Example UPDATE (Cont.) G

Telematics

» Suppose we have a table for news. Visitors can give a
note to each news.

e We have the following table news:

newsID, title, content, votes (number), score (number)
e The following query is used to count one vote:

UPDATE news SET votes=votes+1, score=score+$note WHERE\
newsID="$id’

e We have the following attack

$note="3,_title="hop’

» Why is this interesting?

e Attacking numbers doesn't require ' or’
e Is compatible with magic_quotes_gpc = on

Web Security, Summer Term 2012 6) Injection Flows 19

Example: UPDATE G

Telematics

» Suppose we have the possibility to change the password
of one user

UPDATE ‘user' SET ‘password’ = "$pwdl’ WHERE ‘userID' =\
"Suid’ LIMIT 1;
» We could also change the level of the user
$pwdl = "mypwd’,_userlevel='3";
Which creates the following request:

UPDATE ‘user' SET ‘password’ = 'mypwd’, userlevel="3" WHERE)\
‘userlD* ='$uid’ LIMIT 1,

» Or change the password of any other user
$pwdl = "mypwd’ WHERE_user|D_=_10#";
Which creates the following request:
UPDATE ‘user’ SET ‘password’ = 'mypwd’ WHERE userID = 10

Web Security, Summer Term 2012 6) Injection Flows 18

Example : UNION ALL ”G
Telematics

» UNION ALL is used to concatenate two queries

e Written at the end of a select query, concatenates the two
results

select name, price from article where price>10 union all \
select username, password from user;

» Taken as one result set in programming languages

e UNION ALL is transparent for the program

e works exactly as if the select was normal

e The two selects need to have the same number of columns
» Example in the Guestbook

e Insert this instructions inside the search area
e Done in Exercise

Web Security, Summer Term 2012 6) Injection Flows 20

Attacks using no quotes G
Telematics

> Since most of the server have magic_quotes_gpc = on

1

e Attackers can not use ' or’

» Use MySQL char() function

e Returns the character denoted by the number,
e For instance char(104,111,112) returns the string hop

» Previous attack becomes
e The following query is used to count one vote:

UPDATE news SET votes=votes+1, score=score+$note WHERE\
news|D="$id’

e We have the following attack

$note="3, title=char(104,111,112)

Web Security, Summer Term 2012 6) Injection Flows 21

Conclusion G

Telematics

v

SQL Injection allows attacker to
e Read data: Access passwords, data stored
e Change Data : Access security level
e Delete data
[)

v

SQL injection Vulnerabilities opens the door to:

Privacy breach : Data can be accessed without consent
Identity theft : idem + failure in authentication
Compromission of the system : write of new files (maybe PHP)

» Easy protection are already exploited
e Adding one (or more) layers between presentation and
database layer is a must (also from the point of view of Design)
e Even this has also been successfully exploited.

v

Solution? test your inputs!

Web Security, Summer Term 2012 6) Injection Flows 23

How to protect yourself G
From SQL injection in PHP Telematics

» Configure PHP such that " and ” are automatically
escaped

magic_quotes_gpc = on

» Always quote input before sending query to an
interpreter

e mysql_real_escape_string()
» Do not use any interpreter at all
e Use PDO

Web Security, Summer Term 2012 6) Injection Flows 22

References I I G

Telematics

» OWASP Top 10 - 2007
http://www.owasp.org/index.php/Top_10_2007

» A Guide for Building Secure Web Applications and Web
Services
http://www.lulu.com/content/1401012

» Advanced SQL Injection in SQL Server Applications - Chris
Anley
http://www.nextgenss.com/papers/advanced_sql_
injection.pdf

» L'injection (My)SQL via PHP - leseulfrog
http://www.phpsecure.info/v2/article/InjSql.php
Advanced version:
http://www.phpsecure.info/v2/article/phpmysql.php

» SQLMAP (a SQL Injection Tool)
http://sqlmap.sourceforge.net

Web Security, Summer Term 2012 6) Injection Flows 24

