
IIG University of Freiburg

Web Security, Summer Term 2012

Injection Flows

Dr. E. Benoist

Sommer Semester

Web Security, Summer Term 2012 6 Injection Flows (part 2) 1

Table of Contents

� Injection in PHP

� Shell Injection

� XML-Injection
Black Box testing
Testing for vulnerability
Possible attacks using XML injection

� Conclusion

Web Security, Summer Term 2012 6 Injection Flows (part 2) 2

Injection in PHP

$myvar = ’somevalue’;
$x = $ GET[’arg’];
eval(’$myvar = ’ . $x . ’;’);

I if ”arg” is set to ”10; system(’/bin/echo uh-oh’)”

I The system executes: /bin/echo uh-oh)

I The attacker receives the same rights as the user
owning the http-deamon

Web Security, Summer Term 2012 6 Injection Flows (part 2) 3

Use of variable variables in PHP

$safevar = ”0”;
$param1 = ””;
$param2 = ””;
$param3 = ””;
my own ”register globals” for param[1,2,3]
foreach ($ GET as $key => $value) {

$$key = $value;
}

I If the attacker provides "safevar=bad" in the query
string

I then $safevar will be set to the value "bad".

Web Security, Summer Term 2012 6 Injection Flows (part 2) 4

Shell Injection1

I Shell Injection is named after Unix shells,

I But it applies to most systems which allows software to
programmatically execute command line.

I Typical sources of Shell Injection is calls:
• system(),
• StartProcess(),
• java.lang.Runtime.exec(),
• System.Diagnostics.Process.Start()
• and similar APIs.

I Considere the following short program

<?php
passthru (” /home/user/phpguru/funnytext ”

. $ GET[’USER INPUT’]);
?>

1Source: Wikipedia

Web Security, Summer Term 2012 6 Injection Flows (part 2) 5

Shell Injection (Cont.)
This program can be injected in multiple ways:

I ‘command‘ will execute command.

I $(command) will execute command.

I ; command will execute command, and output result of
command.

I | command will execute command, and output result of
command.

I && command will execute command, and output result of
command.

I || command will execute command, and output result of
command.

I > /home/user/phpguru/.bashrc will overwrite file
.bashrc.

I < /home/user/phpguru/.bashrc will send file .bashrc as
input to funnytext.

Web Security, Summer Term 2012 6 Injection Flows (part 2) 6

Examples of injection
Suppose we have the following shell

<?php
if(isset($ GET[’name’])){

system(’echo ’.$ GET[’name’]);
}
?>

The following content will hack the system

I ‘ls ../../..‘ Executes a command, the returned value is
given as a parameter to echo.

I Produces the following command line:

echo ‘ls ../../..‘

I $(cat /home/bie1/.emacs) Displays the content of the
emacs config file of user bie1.

echo $(cat /home/bie1/.emacs)

Web Security, Summer Term 2012 6 Injection Flows (part 2) 7

Examples of injection (Cont.)

I ; touch /tmp/myfile.txt Creates the following command

echo ; touch /tmp/myfile.txt

Makes a echo, then starts something new, it creates a new
file /tmp/myfile.txt which is empty.

I Hello World | wc creates the following command line:

echo Hello World | wc

It makes a echo then its output is transfered to the wc (word
count).

I test > /tmp/test2.txt Creates:

echo test > /tmp/test2.txt

It writes in the file /tmp/test2.txt the content that is given
as output by echo.

Web Security, Summer Term 2012 6 Injection Flows (part 2) 8

Attacks using shell injection flow

I An attacker can create any type of file
• A txt file
• A PHP file
• A shell file

I Can see and modify config files
• Can visit directories
• Can cat the content of a file
• Can overwrite the content of an existing file

I Attacker inherits the strength of web user
• If web server is run as a normal user: lot of possibilities
• If the web user is restricted to the minimum, risk is smaller.

Web Security, Summer Term 2012 6 Injection Flows (part 2) 9

Defense agains Shell Injection

I PHP offers functions to perform encoding before calling
methods.
• escapeshellarg()
• and escapeshellcmd()

I However, it is not recommended to trust these methods
to be secure

I also validate/sanitize input.

Web Security, Summer Term 2012 6 Injection Flows (part 2) 10

XML-Injection2

I The attacker trys to inject XML
• The application relies on XML (stores information in an XML

DB for instance)
• The information provided by the attacker is evaluated together

with the existing one.

I We will see a practical example
• A XML style communication will be defined
• Method for inserting XML metacharacters
• Then the attacker has information about the XML structure
• Possibility to inject XML data and tags.

2Source: OWASP Testing Guide

Web Security, Summer Term 2012 6 Injection Flows (part 2) 11

Example

I Let us suppose we have the following xmlDB file (information
is stored in an XML)

<?xml version=”1.0” encoding=”ISO−8859−1”?>
<users>

<user>
<username>gandalf</username>
<password>!c3</password>
<userid>0</userid>
<mail>gandalf@middleearth.com</mail>

</user>
<user>

<username>Stefan0</username>
<password>w1s3c</password>
<userid>500</userid>
<mail>Stefan0@whysec.hmm</mail>

</user>
</users>

Web Security, Summer Term 2012 6 Injection Flows (part 2) 12

Insertion of a new user

I Is done with a form (with the GET method)
• Three fields: username, password and email

I Suppose the clients sends the following values
• username=Emmanuel
• password=B3n0is7
• email= emmanuel@uni-freiburg.de

I It produces the following GET request

http://www.benoist.ch/addUser.php?username=Emmanuel&
password=B3n0is7&email=emmanuel@uni−freiburg.de

Web Security, Summer Term 2012 6 Injection Flows (part 2) 13

Insertion of a new user (Cont.)

I The program will create a new XML user-node

<user>
<username>Emmanuel</username>
<password>B3n0is7</password>
<userid>500</userid>
<mail>emmanuel@uni−freiburg.de</mail>

</user>

I The new entry in entered inside the XML DataBase

Web Security, Summer Term 2012 6 Injection Flows (part 2) 14

Vulnerability Testing

I First step for XML Injection vulnerability
• Try to insert XML metacharacters

I Metacharacters are:
• ’ (single quote)
• " (double quote)
• > and < (angular partentheses)
• <!-- --> XML comment tags

Web Security, Summer Term 2012 6 Injection Flows (part 2) 15

Single Quote ’

I This character could throw an exception during XML
parsing

I Suppose we have the following attribute

<node attrib=’$inputValue’/>

I So if: inputValue = foo’ we obtain the following XML

<node attrib=’foo’’/>

Which is a malformed XML expression: Exception at parsing
the DB

Web Security, Summer Term 2012 6 Injection Flows (part 2) 16

Double Quote "

I Has the same meaning as single quotes
• Can be used instead of ’ if " is used in the document

I So if we create the following XML

<node attrib=”$inputValue”/>

and we set inputValue = foo" we obtain the following XML

<node attrib=”foo””/>

Which is also malformed

Web Security, Summer Term 2012 6 Injection Flows (part 2) 17

Angular parentheses < and >

I We create an unbalanced tag

I Suppose we use the value username = foo< in the user
XML-DataBase

I This creates a new user:

<user>
<username>foo<</username>
<password>B3n0is7</password>
<userid>500</userid>
<mail>test@test.de</mail>

</user>

I This document is not valid anymore.

Web Security, Summer Term 2012 6 Injection Flows (part 2) 18

Comments tags <!-- -->

I This sequence of fharacters is interpreted as the
beginning and end of a comment.

I One can inject this sequence in the username parameter:
username= foo<!--

I The application would create such a node:

<user>
<username>foo<!−−</username>
<password>Un6R34kb!e</password>
<userid>500</userid>
<mail>s4tan@hell.com</mail>

</user>

I Which is not valid

Web Security, Summer Term 2012 6 Injection Flows (part 2) 19

Ampersand &

I Ampersand is used to represent XML entities
• Like &symbol;
• Example < for representing the character <

I Can be used to test injection
• One can give username=&foo
• The created node contains:

<username>&foo</username>

• Which is a malformed expression, &foo should be ended with a
;

• but &foo; would also be undefined.

Web Security, Summer Term 2012 6 Injection Flows (part 2) 20

CDATA section delimiters

I <![CDATA[and]] are start and end delimiters of CDATA

I Inside a node a cdata section may be:

<node>
<![CDATA[<foo>]]

</node>

I <foo> won’t be parsed as markup is a character data.

I If a node is build in the following way

<username><![CDATA[<$userName]]></username>

I Tester will try to inject]] to invalidate the page.
• if username=]]>
• Then the node contains
<username><![CDATA[]]>]]></username> which is not a
valid XML fragment.

Web Security, Summer Term 2012 6 Injection Flows (part 2) 21

Result of the Test

I Once having tested all the possiblities,
• Insert metacharacters of any type

I Result
• The site is vulnerable to XML injection
• The structure of the XML format has been discovered.

Web Security, Summer Term 2012 6 Injection Flows (part 2) 22

Possible Attacks using XML injection

I XSS Cross Site Scripting

I External Entity

I Tag Injection

Web Security, Summer Term 2012 6 Injection Flows (part 2) 23

Use CDATA for XSS

I Suppose we have a node containing some text that will
be displayed back to the user

<html>
$HTMLCode
</html>

I Then an attacker can provide the following input

$HTMLCode = <![CDATA[<]]>script<![CDATA[>]]>alert(’xss’)
<![CDATA[<]]>/script<![CDATA[>]]>

I And we obtain the following node

<html>
<![CDATA[<]]>script<![CDATA[>]]>alert(’xss’)
<![CDATA[<]]>/script<![CDATA[>]]>
</html>

Web Security, Summer Term 2012 6 Injection Flows (part 2) 24

Use CDATA for XSS (Cont.)

I Durring the process, CDATA delimiters are eliminated,
so the following HTML code is generated

<script>alert(’XSS’)</script>

Web Security, Summer Term 2012 6 Injection Flows (part 2) 25

External Entity

I The set of valid entities can be extended by defining
new entities.

• If the definition of an entity is a URI, the entity is called an
external entity.

• External entities force the XML parser to access the resource
specified by the URI (Unless configured to do otherwise).

I Such an application is exposed to XML eXternal Entity
(XXE) attacks.
• For performing a denial of service of the local system
• gain unauthorized access to files on the local machine
• scan remote machines
• perform denial of service of remote systems.

Web Security, Summer Term 2012 6 Injection Flows (part 2) 26

Test for XXE vulnerability

<?xml version=”1.0” encoding=”ISO−8859−1”?>
<!DOCTYPE foo [
<!ELEMENT foo ANY >
<!ENTITY xxe SYSTEM ”file:///dev/random” >]>
<foo>&xxe;</foo>

I This test could crash the web server (on a UNIX
system),
• if the XML parser attempts to substitute the entity with the

contents of the /dev/random file

Web Security, Summer Term 2012 6 Injection Flows (part 2) 27

Other XXE tests

I Access the content of /etc/passwd file

Web Security, Summer Term 2012 6 Injection Flows (part 2) 28

Tag Injection

I The tester has gained information about the XML
structure

I It is possible to inject data and tags

I Example: priviledge escalation attack in the previous
example

I Suppose we have the following inputs

Username: tony
Password: Un6R34kb!e
E−mail: s4tan@hell.com</mail><userid>0</userid><mail>s4tan@hell.com

Web Security, Summer Term 2012 6 Injection Flows (part 2) 29

Tag Injection (Cont.)

I The database becomes

<?xml version=”1.0” encoding=”ISO−8859−1”?>
<users>

<user>
<username>gandalf</username>
<password>!c3</password>
<userid>0</userid>
<mail>gandalf@middleearth.com</mail>

</user>
<user>

<username>tony</username>
<password>Un6R34kb!e</password>
<userid>500</userid>
<mail>s4tan@hell.com</mail>
<userid>0</userid>
<mail>s4tan@hell.com</mail>

</user>
</users>

Web Security, Summer Term 2012 6 Injection Flows (part 2) 30

Tag Injection (Cont.)

I Result
• User Tony gets the userid 0 (super-user)

I Problem
• Userid tag appears twice for Tony
• If XML documents is associated with a shema or a DTD, it

will be rejected
• UserID tag has cardinality 1.

I Comment out the superfluous userid

Username: tony
Password: Un6R34kb!e</password><!−−
E−mail: −−><userid>0</userid><mail>s4tan@hell.com

Web Security, Summer Term 2012 6 Injection Flows (part 2) 31

Tag Injection (Cont.)

I The final XML is

<?xml version=”1.0” encoding=”ISO−8859−1”?>
<users>

<user>
<username>gandalf</username>
<password>!c3</password>
<userid>0</userid>
<mail>gandalf@middleearth.com</mail>

</user>
<user>

<username>tony</username>
<password>Un6R34kb!e</password><!−−</password>
<userid>500</userid>
<mail>−−><userid>0</userid><mail>s4tan@hell.com</mail>

</user>
</users>

Web Security, Summer Term 2012 6 Injection Flows (part 2) 32

Conclusion

I Shell Injection
• Attacker inherits the priviledges of the user running the web

server
• Solutions: Filter/Sanitize input + reduce the priviledges to the

minimum

I XML Injection
• Attacker can force the server to load entities from outside
• He can change the content of an XML database, and gain

illegal priviledges in the application.
• Solution: Filter/Sanitize input, allow no metacharcters in your

normal inputs, or escape them.

Web Security, Summer Term 2012 6 Injection Flows (part 2) 33

References

I OWASP Top 10 - 2007
http://www.owasp.org/index.php/Top_10_2007

I A Guide for Building Secure Web Applications and Web
Services
http://www.lulu.com/content/1401012

I OWASP Testing for XML Injection
http://www.owasp.org/index.php/Testing_for_XML_
Injection_%28OWASP-DV-008%29

I Wikipedia.org Code injection.

Web Security, Summer Term 2012 6 Injection Flows (part 2) 34

http://www.owasp.org/index.php/Top_10_2007
http://www.lulu.com/content/1401012
http://www.owasp.org/index.php/Testing_for_XML_Injection_%28OWASP-DV-008%29
http://www.owasp.org/index.php/Testing_for_XML_Injection_%28OWASP-DV-008%29

	6 Injection Flows (part 2)
	Injection in PHP
	Shell Injection
	XML-Injection
	Black Box testing
	Testing for vulnerability
	Possible attacks using XML injection

	Conclusion

