
IIG University of Freiburg

Web Security, Summer Term 2012 Insecure Cryptographic Storage

Dr. E. Benoist

Sommer Semester

Table of Contents

- Presentation
- ExamplesAttacks
- Recommendations
- PCI Data Security Standard
- Conclusion

- Data and Credential are rarely protected with cryptographic functions
 - Data collected can be used by attackers
 - For Identity Theft
 - or other crimes like Credit Card Fraud
- ► Most common problems
 - Not encrypting sensitive data
 - Using home grown algorithms
 - Insecure use of strong algorithms
 - Continued use of proven weak algorithms (MD5, SHA-1, RC3, RC4, etc.)
 - Hard coding keys, and storing keys in unprotected stores

Suppose we manage a e-shop

- We sell goods and clients pay using their credit cards
- We have to store the address and references of all our clients for the legal issues.
- Data stored: name, address, e-mail, phone, Credit Cards Numbers

Our web site is attacked

- Attackers access to our Database
- They can harvest the whole content of our customer clients

E-Commerce Web Site (Cont.) Damages?

- ► For the Clients
 - Use of Credit Cards Number by attackers
 - Privacy violation
 - Identity Theft
 - •
- For The Web Site
 - Reputation
 - Clients data stollen (can be resold to a competitor)
 - Business secrets stollen
- For the Credit Card Company
 - Reputation

- Should be protected with cryptographic tools
- Encryption
 - If you need to read and write data: symmetric encryption (e.g. DES, AES)
 - If reading and writing are done by different entities: asymmetric encryption (e.g. RSA)
- One-way hash functions
 - One input has always the same output
 - Impossible to go from the output back to the input
 - No collision can be generated (two inputs having the same output)
 - Example : SHA-256

Example: Self Made Crypto Algorithm //G
Hash Function Telematics

- ▶ We want to hash a Medical Record Number
 - Highly Sensitive data
 - Require One-Way hashing
 - Needs to be implemented by a partner.
- ▶ Partner delivers a self-made algorithm
 - Based on Modulo
 - This function is so complicated that it can not be reversed.

Self Made Crypto Algorithm

Algorithm

- Transform all the chars in the string into numbers
- Take an arbitrary number (always the same)
- Add this number to the last char, and modulo to remains in interval where conversion of number and char is automatic
- Add the obtained number to the penultimate char and modulo
- etc.
- The numbers obtained form a string
- The string is "secure"

Attack

- Take the obtained string, start from the first
- Substract the arbitrary name to the char, we obtain the original value
- Go on the same
- If the obtained number is negative, then modulo was used, attacker just needs to substract this value.

Recommendations

Recommendations

- ▶ Do not create cryptographic algorithms
 - Only use approved public algorithms such as:
 - AES, RSA public key cryptography and SHA-256 or better
- ▶ Do not use weak algorithms
 - MD5 / SHA1 hash functions have been proven weak
 - Favor safer alternatives such as SHA-256

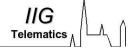
- ► Generate keys offline and store private keys with extreme care
 - Never transmit private keys over insecure channels
- Store if possible your private key encrypted
 - Using a pass-phrase
 - Or in a Password Manager

- Data Base credentials
 - Use tight file system permissions and controls
 - Encrypt securely credentials
- Encrypted data should not be easy to decrypt
 - database encryption,
 - useless if database connection pool provides unencrypted access

PCI Data Security Standard

▶ Payment Card Industry Data Security Standard

- Developed by major credit card companies (e.g. Visa, Mastercard, American Express)
- to help organizations preventing credit card fraud


Must be implemented by any merchant using Credit Cards

- A company processing, storing or transmitting payment card data must be PCI DSS compliant
- Risk: losing their ability to process credit card payment

Compliance must be validated periodically

- Validation conducted by auditors (Qualified Security Assessors (QSAs)
- Smaller companies just fill a self-assessment questionnaire.

PCI-DSS Requirements

Build and Maintain a Secure network

- Install and maintain a firewall
- Do not use vendor-supplied default password and other security parameters

Protect Card-holder Data

- Protect stored card-holder data
- Encrypt transmission of card-holder data across open, public networks

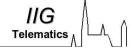
► Maintain a Vulnerability Management Program

- Use and regularly update anti-virus software
- Develop and maintain secure systems and applications

► Implement String Access Control Measures

- Restrict access to card-holder data by business need-to-know
- Assign a unique ID to each person with computer access
- Restrict physical access to card-holder data

- ► Regularly Monitor and Test Networks
 - Track and monitor all access to network resources and card-holder data
 - Regularly test security systems and processes
- Maintain an Information Security Policy
 - Maintain a policy that addresses information security


Card-holder Data

- Primary Account Number (PAN, a.k.a. credit card number)
- Card-holder name
- Service Code
- Expiration Date
- Can be stored
- Require protection

Sensitive Authentication Data

- Full Magnetic Stripe
- CVC2/CVV2/CID
- PIN
- Can in no case be stored

Store only necessary data

Develop a data retention and disposal policy

- Limit storage and retention time to which is required
- for business, legal, and/or regulatory

► Protect PAN

- Truncate card-holder data if full PAN is not needed
- Never send PAN in unencrypted e-mails
- Mask PAN when displayed

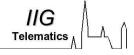
Render PAN unreadable anywhere it is stored

- Strong one-way hash functions
- Truncation
- Index tokens and pads (pads must be securely stored)
- Strong cryptography with associated key management processes and procedures

Conclusion

► Insecure Cryptographic Storage

- No encryption of sensitive data
- Use of home-made "crypto" algorithms
- Use of weak algorithms


Protection

- Use only proven strong algorithms
- Take care the way data are stored
- Encryption is useless if anybody knows the key!

PCI Data Security Standard

- MUST HAVE for any merchant using credit-cards
- Describe security measures
- Verifies their implementation.

References

- ► OWASP Top 10 2007 http://www.owasp.org/index.php/Top_10_2007
- ► A Guide for Building Secure Web Applications and Web Services

http://www.lulu.com/content/1401012

- ► Web Application Security Consortium: Threat Classification (2004)
 http://www.webappsec.org
- Wikipedia PCI DSS http://en.wikipedia.org/wiki/PCI_DSS
- ▶ PCI Security Standards Council (download PCI DSS) https://www.pcisecuritystandards.org/tech/ download_the_pci_dss.htm