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Binary vs. Text Files
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Binary vs. Text Files
Different file formats (examples)

Images: jpeg, gif, png, svg, . . .

Documents: pdf, doc, ppt, xls, . . .

Executables (Programs): exe, dll, so, class, . . .

Plain text: txt, html, tex, . . .

Source code: asm, c, cpp, java, . . .

Two primary types
Binary files (images, documents, executables, . . . )

Text files (plain text, source code, . . . )

Distinction not always strict
svg is a format for vector graphics based on XML and can thus be considered a text file

Office documents are often also a form of compressed XML

. . .
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Text Files

Different character encodings
7 bit / US-ASCII

ISO-8859-*

UTF-8

. . .

How to work with text files?
Using any text editor or IDE

vim, emacs, Notepad (windows), gEdit, kate, sublime, atom, . . .

Eclipse, NetBeans, IntelliJ, kDevelop, . . .
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Binary Files I
A lot of different file formats

Open and proprietary
Encoding and structure depend on type!

Executable files (Programs)
Windows: exe
GNU/Linux: elf (32 bits), elf64 (64-bit)
Contain machine instructions and data
Can be analyzed with a decompiler or disassembler

Images
jpeg: format family, lossy compression
gif: 8-bit color, animations possible
png: 32-bit color, no animations, modern lossless compression (good for screenshots)
svg: vector graphics, not a binary file type (see Slide 4)
Can be manipulated with libraries and image editors
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Binary Files II

How to analyze any type of binary data?
Using a hex editor

Editors: Bless, xxd, . . .

Bless functionality
Display binary and textual representation at the same time

Various conversions to different representations

Can read and edit any file – also executable files
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Binary Files III
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Binary Files IV

Data is ultimately always encoded in binary
Example

Capital letter “S” is encoded with 0x53 (ASCII/UTF-8)

For the computer, this is a set of 8 bits: 01010011

Can also be part of a different number

0x53 may be interpreted as decimal 83
0x53_61 may be interpreted as the decimal 21’345
0x53_61_6D_0A may be interpreted as the decimal 1’398’893’834
0x53_61_6D_0A_77_61_73_0A may be interpreted as the floating point number
4.54365038640977.1093

But: This pattern can also mean anything else

Can be part of an instruction
Can be any data (object, address, . . . )
. . .

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 9

Endianness
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Endianness
Having multiple bytes of data. . .

Example: 0x53 0x61 0x6D 0x0A 0x77 0x61 0x73 0x0A

Can be read/interpreted left-to-right (like European languages)

0x53 0x61 0x6D 0x0A 0x77 0x61 0x73 0x0A

0 1 2 3 4 5 6 7

. . . but can also be read/interpreted right-to-left (like in Arabic)

0x0A 0x73 0x61 0x77 0x0A 0x6D 0x61 0x53

7 6 5 4 3 2 1 0

The same data — but different meaning!

Which number does the above data represent?
0x53616D0A7761730A ?

0x0A7361770A6D6153 ?

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 11

Big Endian vs. Little Endian
Big Endian

Data is stored with the most significant byte (MSB) first
Example: Number 0x20A1 is stored as follows

0x20 0xA1

0 1

Little Endian
Data is stored with the least significant byte (LSB) first
Example: Number 0x20A1 is stored as follows

0xA1 0x20

0 1

Endianness is dependent of CPU architecture
Intel x86 uses little endian
Other architectures may use big endian
Some CPUs even support both
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Big Endian vs. Little Endian Chapter 5 ■ The Right to Assemble 119
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Figure 5-5: Big endian vs. little endian for a 16-bit value

There are big differences at stake here! The two bytes that begin our example
text file represent the decimal number 21,345 in a big endian system, but 24,915
in a little endian system.

It’s possible to do quite a bit of programming without being aware of a
system’s ‘‘endianness.’’ If you program in higher-level languages like Visual
Basic, Delphi, or C, most of the consequences of endianness are hidden by the
language and the language compiler—at least until something goes wrong
at a low level. Once you start reading files at a byte level, you have to know
how to read them; and if you’re programming in assembly language, you had
better be comfortable with endianness going in.

Reading hex displays of numeric data in big endian systems is easy, because
the digits appear in the order that Western people expect, with the most
significant digits on the left. In little endian systems, everything is reversed;
and the more bytes used to represent a number, the more confusing it can
become. Figure 5-6 shows the endian differences between evaluations of a
32-bit value. Little endian programmers have to read hex displays of multibyte
values as though they were reading Hebrew or Arabic, from right to left.

Remember that endianness differences apply not only to bytes stored in
files but also to bytes stored in memory. When (as I’ll explain later) you
inspect numeric values stored in memory with a debugger, all the same rules
apply.
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Negative Numbers
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How to Represent Negative Numbers?

So far, we have seen positive numbers
Example: 15

In memory: 0x0F (8 bit) or 0x0000000F (32 bit)

What about negative numbers?
Example: -15

In memory: ???
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Idea: Sign Bit

What if we use one bit for the sign?
Taking the first bit as sign bit. . .

15 is still 0x000F (16 bit)

-15 would be 0x800F

Problems
Two representations of 0 exist: 0x0000 and 0x8000

Standard (bit-level) addition does not work:

15 + (-15) = 0x000F + 0x800F = 0x801E = -30
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One’s Complement

One’s Complement
The negative number is obtained by inverting all the bits

15 = 0x000F

15 = 0b0000 0000 0000 1111

-15 is represented by 0b1111 1111 1111 0000

-15 = 0xFFF0

Problems
We still have two representations of 0: 0x0000 and 0xFFFF

Addition still does not work:

15 = 0x000F and -5 = 0xFFFA. The sum is 0x10009 = 9, if we ignore the overflow
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Two’s Complement
Negative numbers must respect arithmetic

15 + (−5) = 10

Idea: −X is represented by 2n −X , with n being the bit-width

X + (−X) = X + (2n −X) = 0 with overflow

Example 1
Representation of −1 in 16 bits

216−1 = 215 + 214 + 213 + 212 + 211 + · · ·+ 21 + 20

−1 is written 0xFFFF

1 + (−1) = 0x10000 (overflow!)

Example 2
Representation of −20 in 16 bits

216−20 = 65516 = . . .

. . . hard to compute

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 18

Two’s Complement
Method for easy computation of two’s complement

Take the binary representation of X
Invert all the bits of X
Add 1

Example 2 again
Want: −20

20 = 0b0000 0000 0001 0100
. . . inverting all the bits
0b1111 1111 1110 1011
. . . adding 1

0b1111 1111 1110 1100 = 0xFFEC
Arithmetic works!

15 + (−5) = 10

0b0000 1111 + 0b1111 1011 = 0b1 0000 1010
Ignoring overflow: 0b0000 1010 = 10
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Introduction to Floating Point
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Floating Point Arithmetic

In the early days, CPUs where only able to handle integer arithmetic.
However, for scientific and also everyday purposes, real numbers (R) are required.

The data types for working with real numbers have special properties that every programmer
must know.

Representation of real numbers and floating point arithmetic is standardized in the
IEEE 754 standard, which is supported by most programming languages and CPUs
nowadays.
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Fixed Point Numbers

How to represent the decimal number 543.125 in fixed point arithmetic? Recall: Every
number in base b can be written as

x =

∞∑

i=−∞
dib

i

where di are the respective digits of the number and b is the base.

This way, the number 543.125 may be written as the sum:

543.125 = 5 · 102 + 4 · 101 + 3 · 100 + 1 · 10−1 + 2 · 10−2 + 5 · 10−3

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 22

Binary Fixed Point Numbers

As the number 543.125 exists independently of any base, it must be possible to
obtain a binary representation. We proceed as follows:

1. First, the integral part of the number is converted to binary

543 = 0b10 0001 1111

2. Then, the fractional part of the number is converted as well

0.125 = 0b0.001

The whole, fixed point binary number is then

543.125 = 0b10 0001 1111.001
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Converting to Fixed Point Binary I
First, we convert the integer part as usual, using division by 2 with remainder:

Example: 543

543 | 1

271 | 1

135 | 1

67 | 1

33 | 1

16 | 0

8 | 0

4 | 0

2 | 0

1 | 1

543 = 0b10 0001 1111
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Converting to Fixed Point Binary II

To convert the fractional (or decimal) part, we do the opposite and multiply by two
until we have no remainder:

Example: 0.125

0.125 | 0.

0.25 | 0

0.5 | 0

1 | 1

0.125 = 0b0.001
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Some Mathematical Considerations

A rational number (Q) is either finite or infinite periodic.
The property of “rationality” is independent of the base used to represent a number.

A rational number may have a finite representation in one base and a periodic infinite
representation in another base.

Example: the number 1
3

has an infinite periodic represention in base 10. . .

. . . but is written 0.13 in base 3!

Irrational numbers (R \Q) are infinite and non-periodic.
They do not have a finite representation in any base.
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Infinite Periodic Number Example

0.1 is finite in decimal — but not in binary:

0.1 | 0.

0.2 | 0

0.4 | 0

0.8 | 0

1.6 | 1 -> 0.6

1.2 | 1 -> 0.2

0.4 | 0

0.8 | 0

1.6 | 1 -> 0.6

1.2 | 1 -> 0.2

...

0.1 = 0b0.0001100110011
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Scientific Notation

The main drawback of fixed point numbers is that their size depends on their magnitude and their
precision.

In engineering, most of the time, the precision can be reduced as the magnitude increases. This is
the concept of significant digits.

On pocket calculators, this is usually known as “scientific notation”. Examples:

1.344 · 104 (= 13 440)
2.342 · 10−5 (= 0.000 023 42)
4.430 · 100 (= 4.430)

All theses numbers have 4 significant digits (called the mantissa). The exponent (10x) “scales” the
numbers.

With 4 significant digits, the mantissa is always between 1.000 and 9.999.
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The IEEE 754 Standard

The IEEE 754 standard used for binary representation of floating point numbers is
based on the same idea:

The mantissa is a number ≥ 1.0 and < 2.0.

The exponent is now an exponent of 2. It may take positive or negative values.

Maximum exponent and precision (number of significant digits in the mantissa) depends on the
encoding format, see Slide 36.

The standard also introduces special values (negative infinity, positive infinity, not a number, zero).

It also contains rules for rounding.
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IEEE 754, An Example

Example: Encoding the decimal number 0.5 (= 1.0 · 2−1) in IEEE 754:1

0.5 = 0 0111 1110 0000 0000 0000 0000 0000 000

The first bit is the sign bit. Its value is 0 for positive numbers and 1 for negative numbers.

The exponent, in this case 2−1, is encoded with a so-called bias .

The mantissa is 1 (not encoded due to the hidden bit ).

1The number is encoded in single precision format (e.g. float in C or Java).
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IEEE 754, The Exponent

The exponent can be positive or negative.

It is encoded as a signed integer with bias , i.e. without using two’s complement!

The bias is added to the original exponent and corresponds to half the magnitude of the exponent
minus one.
For example, if the exponent is 8 bits, its magnitude is 28 = 256 and the bias is 2(8−1) − 1 = 127.

Two exponents, 0016 and FF16, are reserved to increase precision for very small numbers and for
representing special values.
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IEEE 754, The Mantissa

Contains a value in the interval 1 ≤ mantissa < 2.

As the mantissa is always ≥ 1, the bit for the 0th power (i.e. 20) may be ommitted, increasing
precision. This is called the hidden bit . Due to this, the mantissa is 0 in the given example.

Exception: For denormalized numbers (exponent 0), the mantissa m is 0 < mantissa < 1! This is
used for very small numbers (below 2−126).

The bits of the mantissa represent the sum of negative powers of 2.
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IEEE 754, Values
The following table lists possible values for IEEE 754 encoded numbers:

Exponent Mantissa Value Description
0016 = 0 0 Zero
0016 > 0 ±0.m · 2(1−b) Denormalized

0116 to FE16 any ±1.m · 2(e−b) Normalized
FF16 = 0 ±∞ ± Infinity
FF16 > 0 NaN Not a Number (NaN)

Remarks:
e is the exponent, b the bias value.

There are two possible representations for the value 0 (+0 and -0).

Exponents 0016 and FF16 represent special values!

All other exponents (0116 to FE16) are normalized values.
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Comments on Special Values

The value zero needs a special representation as it is not possible to represent it using the
standard encoding (see example above).

Infinity represents numbers whose magnitude cannot be encoded. However, arithmetical
operations where one operand is infinity are well defined by IEEE 754 (see next slide).

Operations where one operand has the value NaN cause an error.

Warning: Handling of denormalized values is hardware and implementation dependent and may
lead to performance issues. This must be considered when using them.
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IEEE 754
Operations with Special Values

Operation Result
x/±∞ 0
±∞ · ±∞ ±∞
± non zero / 0 ±∞
±0/± 0 NaN
∞+∞ ∞
∞−∞ NaN
±∞/±∞ NaN
±∞ · 0 NaN
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IEEE 754 Formats

IEEE 754 (2019) defines three basic formats for binary floating point numbers:2
Single precision, double precision and quadruple precision. They differ only by the
number of bits required to store them:

Sign Exponent Mantissa Bias
Single precision (32 bit) 1 8 23 127
Double precision (64 bit) 1 11 52 1023

Quadruple precision (128 bit) 1 15 112 16383

Note: Due to the hidden bit, precision equals to mantissa +1.

2Formats with different bit widths, as well as decimal formats (using radix 10) are also specified as
non-basic formats and are not treated here.
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IEEE 754 Rounding

IEEE 754 has five different rounding modes. The first two round to nearest, the
others are directed roundings.

Round to nearest, ties to even
Round to nearest encodable value. If exactly midway, round to the nearest value where the least
significant bit of the mantissa is 0.

Round to nearest, ties away from zero
Round to nearest also, but round up (positive numbers) or down (negative numbers)

Round toward 0
Rounds to 0 (truncation)

Round toward +∞
Always round up.

Round toward −∞
Always round down.
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Examples for Rounding

Rounding Mode +11.5 +12.5 -11.5 -12.5
to nearest, ties to even +12.0 +12.0 -12.0 -12.0
to nearest, ties away from zero +12.0 +13.0 -12.0 -13.0
toward 0 +11.0 +12.0 -11.0 -12.0
toward +∞ +12.0 +13.0 -11.0 -12.0
toward −∞ +11.0 +12.0 -12.0 -13.0
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Comparing Floating Points Values

Many floating point operations are not associative due to rounding! That is, the same
expression, but computed in a different order, may create different results!

This makes the comparison of floating point values particularly tricky and
complicated.

Moreover, different compilers, even though implementing the same standard, may
yield different results!
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Problem: Absorbtion (C)

Absorption occurs when working with numbers with large differences in magnitude:
#include <stdio.h>

int main(void) {

float val1 = 100.0, val2 = 0.05, val3 = 0.05;

printf("sum 1: %f\n", (val1 + val2) + val3);

printf("sum 2: %f\n", val1 + (val2 + val3));

}

> ./absorbtion

sum 1 : 100.100006

sum 2 : 100.099998
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Problem: Absorbtion (Java)

public class Absorbtion {

public static void main (String args[]) {

float val1 = 100.0f;

float val2 = 0.05f;

float val3 = 0.05f;

System.out.println("sum 1 : " + ((val1 + val2) + val3));

System.out.println("sum 2 : " + (val1 + (val2 + val3)));

System.out.println("sum 3 : " + (val1 + val2 + val3));

}

}

java Absorbtion

sum 1 : 100.100006

sum 2 : 100.1

sum 3 : 100.100006
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Comparing Floats: Idea

� Due to such problems, it is totally “forbidden” to compare floating point values
using the == operator.

This solution — seen in many books — fails most of the time:
final float EPSILON = 10e-6;

...

if Math.abs(value1 - value2) < EPSILON {

...

}

Problem: The value of the constant EPSILON depends on the magnitude of the tested
values.
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Comparing Floats: Bitwise I

One can try to compare both values bit-by-bit. For example:
1. Transform the float values � bitwise into integers (e.g. in Java using the method

floatToIntBits())

2. Mask the 2 LSB of each value

3. Compare the result.

Question: � Why does this comparison fail?
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Comparing Floats: Bitwise II

#include <stdio.h>

typedef union {

int intVal;

float floatVal;

} intFloat;

int main(void) {

intFloat testVal;

testVal.intVal = 0x3fffffff;

printf("v1 as int : %x\n", testVal.intVal);

printf("v1 as float : %f\n", testVal.floatVal);

testVal.intVal = 0x40000001;

printf("v2 as int : %x\n", testVal.intVal);

printf("v2 as float : %f\n", testVal.floatVal);

return 0;

}
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Comparing Floats: Bitwise III

./a.out

v1 as int : 3fffffff

v1 as float : 2.000000

v2 as int : 40000001

v2 as float : 2.000000
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Comparing Floats: Absolute Error I

The main idea is to have an error margin which depends on the magnitude of the two values being
compared.

The simplest formula for that is:
|a− b|

b
< ε

for a given ε value independent of the magnitude of a and b.

� If b is zero (or very near to zero) this direct computation fails!
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Comparing Floats: Absolute Error II

diff←
∣∣ |a| − |b|

∣∣
if a is strictly equal to b then

return true {for∞ and NaN}
else if a = 0 or b = 0 or (|a|+ |b| < min normal value) then

{for very small value of a and b}
return diff < (ε ∗ min normal value)

else
return (diff / min(|a|+ |b|,max float value)) < ε;

end if

Note: min normal value is the smallest value which can be stored without using a denormalized value.
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Total ordering predicate

The standard provides a predicate totalOrder which defines a total ordering for all
floating point numbers in each format.

The predicate agrees with the normal comparison operations when they say one
floating point number is less than another.

The normal predicate compares -0 and +0 as equal.

The normal comparison operations however treat NaNs as unordered.
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Conclusion
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Conclusion

Encoding Numbers
Little and big endian,

Least and most significant bytes (MSB/LSB),

Signed numbers are encoded using 2’s complement.

Real numbers
Are composed of sign, mantissa and exponent.

Equality (“==” does not work) and comparison is tricky.
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