CS Basics - Exercises
Bits and Branching

E. Benoist P. Mainini

Fall Term 2022-23

1 Exponentiation

Create a program that computes the power 264, Store the values as x and exponent in
memory. Then, write the code to compute the value z¢*P°"¢"t Place the result on the
stack in little endian order. Examine it using gdb — is it correct?

2 Input and Output

1. Create a program that reads up to 16 characters from stdin, and then outputs
the same characters back on stdout.

2. Create a program similar to the first, but reading characters endlessly until stdin
is closed (e.g. Ctrl-d is pressed or the end of the file has been reached).

3. Create a modified version of the previous program, which converts upper case
letters ("A" — "Z") to lower case. Ensure that only letters are converted and all
other characters are output without modification!

3 Compute Binary Logarithms

The goal of this exercise is to write a program, which calculates the binary logarithm of
the number 0x20. For this, divide 0x20 by 2 as long as the result is not 0. The binary
logarithm is then the number of divisions required.

Your program should return the binary logarithm as the return code, which can then
be inspected in the shell as follows:

$./exercise3
$ echo $7

4 Convert Numbers from/to ASCII

In this exercise, an ASCII representation of a decimal number should be read from
stdin and converted to a number which can be used for performing calculations (i.e. in
a register). The biggest number to be entered is 264 — 1.

After reading and converting the number, its binary logarithm should be calculated
as in the previous exercise. The result should then be returned as a decimal number on
stdout.

Additionally, the program should return with a return code # 0 on error, 0 otherwise.

It might be easier to break the task into smaller steps (maybe creating different pro-
grams for each):

1. Do not care about reading the number from stdin first, simply define it as an
ASCII string in .data and implement the conversion. Store the result in a register
and check it with the debugger.

2. Start by converting a one-digit number. When you have understood the principle,
increase the number of digits.

3. When number conversion works, implement reading it from stdin.
4. Calculate the logarithm as in the previous exercise.

5. Convert the result back to ASCII. The conversion is almost the same as when
converting the digits from ASCII.
Hint: The result has no more than two digits, use division (div) to separate them.

4.1 Example Output

Below are some examples of logarithms calculated with the program (first number is the
input, second number the logarithm):

$./exercised
0
00

$./exercised
1
00

$./exercised
2
01

$./exercised
32
05

$./exercised
18446744073709551615
63

$./exercised
18446744073709551616
00

	Exponentiation
	Input and Output
	Compute Binary Logarithms
	Convert Numbers from/to ASCII
	Example Output

