CS Basics - Exercises Functions and Arrays

C. Grothoff and E. Benoist

Fall Term 2022-23

1 Arrays

• Write a function for initializing an array with a given value. The parameters of the function are: the array, its length and the new value all the cells will be set to. Example of use:

```
int64_t my_array[256];
init_array(my_array, 256, 42);
```

Write a function that takes as input a int64_t value, an array of int64_t and the
corresponding length of the array. The function should then find the prime factors
of the given int64_t and write them to the array. The array should be terminated
with a 0-byte. The function should return true on success and false if the array
was too short.

Example of use:

```
// returns true, my_array then contains {5, 29, 0, ...}
bool success = prime_factors(145, my_array, array_length);
```

• Write a function that displays all the elements of an array until finding an element containing a 0-byte. Use the function to display the prime factors for some numbers using the function implemented above.

Example of use

```
print_array(my_array);
```

• In a similar fashion, write a function average, which takes an array of int64_t and its length, and returns the average of all the values in the array. Then, optionally, write another function stddev, which uses average to compute the *standard deviation* for all the elements of an array.

2 Creating a Library

Make sure you have libtool installed for this exercise.

Read about how to build libraries using the GNU Build System:

https://www.gnu.org/software/automake/manual/automake.html#A-Shared-Library

Then, write a library "my_lib.c" and the corresponding header file "my_lib.h". Also write a program called "my_program.c", which will use that library.

- The file my_lib.c contains the definitions of the functions "uint64_t logarithm(uint64_t)" (binary logarithm) and "double exponential(int64_t)" (exponential function e^x).
- The file my_lib.h declares the corresponding function prototypes.
- The file my_program.c uses the functions given above.

Add the required files for the GNU Build System and initialize it. Ensure to add "LT_INIT" to your configure.ac file. Finally, build and install your program to a location of your choice.