CS Basics - Exercises
Pointers in C

C. Grothoff and E. Benoist and P. Mainini
Fall Term 2022-23

1 Pointers

1.1 Swap Variables

Write a function which swaps the contents of two int32_t variables. Provide a main
function which tests the function you have written.

1.2 Array = pointer

Suppose that we have the following code:
int32_t minimum(int32_t *array, size_t size);
int main(void) {

int32_t arrayl[] = {34, 54, 2, 43, 78};
int32_t min = minimum(array, 5);

printf("%d\n", min); // prints "2"
}

Write the code for the function minimum() without using any “[1”; use only pointers
and the dereferencing operator (“x”).



Write a second function minmax (), which takes as input an array and pointers to two
variables min and max. It should write the minimum and maximum value of the elements
in the array to min and max.

void minmax(int32_t *array, size_t size, int32_t *min, int32_t *max);
int main(void) {

int32_t min = 0, max = O;
int32_t array[] = {34, 54, 2, 43, 78};

minmax(array, 5, &min, &max);
printf("min: %d, max: %d\n", min, max); // prints "min: 2, max: 78"

}

Could you also change minmax() that it returns an array with the minimum and
maximum values? What would be the challenge?

1.3 sizeof()

Consider the following code:

int main(void) {
int32_t arrayl[] = {34, 54, 2, 43, 78};
int32_t *a = array;

printf ("%1lu %lu %lu %lu\n", sizeof array, sizeof a, sizeof *array,
sizeof *a);

Use it as an inspiration to avoid the magic constant “5” in the previous exercises.



2 Arrays vs. Pointers in Assembly

We do want to understand how arrays and pointers are treated by the compiler when
generating assembly code. Proceed as follows:

1. Compile resources/disassemble.c without optimization, i.e.
gcc -std=cl7 -Wall -Wextra -Wpedantic -00 disassemble.c -o disassemble
2. Disassemble the binary and try to understand the functions array and pointer.

e How do they work? Do they differ? If so, what’s the most important differ-
ence?

e Can you identify where the variables from the C code are stored in assembly?
e Why are they stored that way?
Hint: For disassembling, use “objdump -M intel -d disassemble”, you can then

search for “array”, "pointer” or also "main”. ..

3. Change all the uint16_t data types to uint32_t. Compile and disassemble again.
What has changed?

4. Which parts of the generated assembly code might be inefficient? How could that
be improved?

5. Recompile with different optimizations: -01, -02 and -03. Can you still under-
stand the code? What changes?



	Pointers
	Swap Variables
	Array = pointer
	sizeof()

	Arrays vs. Pointers in Assembly

