
Operating Systems
Part 1: Virtualization – 1) Processes
Revision: master@323240b (20230907-115823)

BTI1341 / Fall 2023/24

P. Mainini / E. Benoist / C. Fuhrer / L. Ith

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 1

Outline

CPU Virtualization

Introduction to Processes

Limited Direct Execution

Creating Processes

Appendix

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 2

CPU Virtualization

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 3

CPU Virtualization

Recall: In the introduction, we provided a few motivations to
virtualize the CPU:

I Enables running multiple programs at the “same” time
I Provides the illusion of having an infinite number of CPUs
I Instructions from different programs do not interfere with

each other

The interesting question now is: How can such virtualization
actually be implemented?

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 4

Virtualization: Abstract Idea

The main concept behind virtualization is to provide access to a
single resource multiple times “at once” (and probably for different
parties).
In the physical world, this is difficult. However, in computing, we
can resort to a trick:

I Each resource is available only once
I Full access is given for a resource…
I …but only during a restricted time frame
I This is known as time sharing
I Everyone requiring the resource accesses it in turns

How is this possible?

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 5

Introduction to Processes

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 6

The Process

Definition
A process a is (informally) a running instance of a program.
I A program is a set of instructions (and possibly data)

stored on disk
I Each program in general exists only once on a computer
I A process is an instantiation of a program
I There can be 0 . . .N processes (from different programs)

running at the same time
aSometimes also called a task

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 7

Process as an Abstraction

A process is an abstraction of a running program: A representation
of everything relevant being read or written while the program is
running (its machine state). Most importantly:

I The address space : The whole memory belonging to the
process

I CPU registers , especially
I The program counter (PC) , also called

instruction pointer (IP)
I Stack pointer (SP) and corresponding frame pointer (FP)

I I/O information (e.g. open files)

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 8

Process API

In order to work with processes, an OS must provide an API, which
supports in some form:

I The creation of processes, as well as their destruction
I Functionality for waiting and controlling
I Access process status information

All modern operating systems provide such an API, although they
all look a bit different.

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 9

Process Creation

When creating a process, the OS performs a series of steps. In a
nutshell:
I Load the program into memory:1 executable code and static

data (i.e. initialized variables)
I This includes code from shared libraries

I Allocate the stack ; often initialized with program arguments
and environment

I Maybe preallocate some heap memory
I Initialize I/O

I E.g. UNIX: open stdin, stdout and stderr file descriptors
I Run the main() function

1This is often done lazily, i.e. only when selected parts are required.
Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 10

Process Creation Illustrated
MemoryCPU

Disk

code
static data

heap

stack

Process

code
static data

Program Loading:
Takes on-disk program

and reads it into the
address space of process

Figure: Loading a Program
Courtesy of [ADAD18]

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 11

Process States

A process can be in different states, simplified:

Running The process is running on a CPU, i.e. it is executing
instructions

Ready The process is ready to be run. For some reasons, the
OS has chosen not to run it at this given moment

Blocked (waiting) The process has performed some operation
which makes it wait for an event to happen. Often,
this is caused by an I/O request: reading data from
disk or waiting for user input.

We say that a process is being scheduled if it moves from ready
to running state; descheduled if it moves from running to ready.

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 12

Process States Illustrated

Running Ready

Blocked

Descheduled

Scheduled

I/O: initiate I/O: done

Figure: Process States and Transitions
Courtesy of [ADAD18]

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 13

Process State Trace: CPU only

This is an example of two processes running, using only the CPU
(no I/O):

Time Process0 Process1 Notes
1 Running Ready
2 Running Ready
3 Running Ready
4 Running Ready Process0 done
5 - Running
6 - Running
7 - Running
8 - Running Process1 done

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 14

Process State Trace: CPU and IO

This is an example with two processes; at some time, one of them
is blocked due to an I/O request.

Time Process0 Process1 Notes
1 Running Ready
2 Running Ready
3 Running Ready Process0 initiates I/O
4 Blocked Running
5 Blocked Running
6 Blocked Running
7 Ready Running I/O done
8 Ready Running Process1 done
9 Running -
10 Running - Process0 done

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 15

OS Data Structures
Internally, OSes use a variety of data structures to track and
manage processes, I/O, users and much more. Typically, a
process list (task list) tracks all processes present in a system.

A process structure (sometimes called
process control block (PCB) or process descriptor) represents an
individual process:2

I Process ID (PID)
I Parent process
I Process state
I Information about memory, stack, …
I Context (register values)
I …and more!

2The fields in the process structure are highly dependent of the OS.
Different fields may be present and they may have different names!

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 16

The xv6 proc Structure
Source: [xv6a]

struct context {
uint edi;
uint esi;
uint ebx;
uint ebp;
uint eip;

};

enum procstate { UNUSED, EMBRYO, SLEEPING, RUNNABLE, RUNNING, ZOMBIE };

// Per-process state
struct proc {

uint sz; // Size of process memory (bytes)
pde_t* pgdir; // Page table
char *kstack; // Bottom of kernel stack for this process
enum procstate state; // Process state
int pid; // Process ID
struct proc *parent; // Parent process
struct trapframe *tf; // Trap frame for current syscall
struct context *context; // swtch() here to run process
void *chan; // If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
struct file *ofile[NOFILE]; // Open files
struct inode *cwd; // Current directory
char name[16]; // Process name (debugging)

};

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 17

Limited Direct Execution

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 18

Time Sharing for Virtualization

Now that we have some understanding of processes, let’s come
back to CPU virtualization:

I CPU virtualization can be achieved using time sharing
I Basic idea: let a process run for a while, then switch to

another
I Issue No.1: Control

I How to keep control over the CPU?
I Why should a process return? What about endless loops?
I How to prevent it from accessing restricted information?

I Issue No.2: Performance

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 19

Limited Direct Execution

The model which we will use is called limited direct execution . It
consists of two key points:
Direct Execution: Processes run directly on the CPU, i.e. there is
no additional abstraction layer between process and CPU
(performance!)
Limits: There are some limiting mechanisms in place for
I Running time (we want to switch back to the OS or other

processes…)
I Resource access (e.g. memory of other processes or I/O

devices)

For this, some support from the CPU is required: Distinction of
user mode and kernel mode .3

3
� Sometimes, these are also referred to as CPU rings or domains.

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 20

Direct Execution
(Without Limits)

OS Process
Create process list entry
Allocate memory
Load program into memory
Set up stack (argc/argv)
Clear registers
Execute call main()

Run main()
Execute return from main()

Free memory of process
Remove from proc. list

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 21

Interlude: What is the Kernel?

Applications

Shell

Library Routines

System Calls

Kernel

Figure: Architecture of the UNIX Operating System
Courtesy of [SR13]

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 22

Switching Between Modes

Having user- and kernel mode enables limiting the capabilities of a
process. But two important questions remain open:

1. How can a process do privileged things, e.g. access a file?

2. How does the OS regain control?

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 23

Introducing System Calls

Question 1 is generally solved using system calls 4 (think of a
“function call” from the process into the OS):

I With a special trap CPU instruction (often an interrupt), the
process returns control to kernel mode. It’s context is saved
by the CPU on the kernel stack

I The CPU knows which kernel code to call due to a trap table
(often called interrupt vector table), initialized at boot time

I Using a return-from-trap instruction, the OS returns control
to the process, context is restored

4
� On GNU/Linux, you can obtain a list of system calls with

“man 2 syscalls”. In general, there is also a man page per syscall available
with “man 2 <syscall>” – use it!

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 24

Limited Direct Execution
OS @boot
(kernel mode) Hardware

Initialize trap table
Store addr. of syscall
handler

OS @run (kernel
mode) Hardware Process (user mode)

Create process list entry
Allocate memory
Load program into
memory
Set up user stack
(argc/argv)
Push regs/PC to kernel
stack
return-from-trap

Restore regs from
kernel stack
Move to user mode
Jump to main()

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 25

Limited Direct Execution (cont.)
OS @run (kernel
mode) Hardware Process (user mode)

Run main()
…
Perform syscall
trap into OS

Save regs to kernel
stack
Move to kernel mode
Jump to trap handler

Handle trap
Do syscall work
return-from-trap

Restore regs from
kernel stack
Move to user mode
Jump to PC after trap

…
Return from main()
trap (via exit())

Free memory of process
Remove from proc. listBerner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 26

Question 2: Regaining Control

The OS wants to switch to another process…No problem – except:
It is not running on the CPU anymore!

Two possible solutions:
Cooperation Provide a special yield syscall or simply wait for the

next regular one. They happen often.
OS takes control Using a timer interrupt (requires hardware),

“automatic” return to the OS at regular intervals is
possible.

→ Which one is better, what do you think? What are the pros and
cons? What if a timer interrupt occurs during another timer
interrupt?

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 27

Context Switches
A context switch occurs, when the operating system switches
from one process to another. It consists of a few steps:

I While switching to kernel mode, general purpose registers and
SP/PC of the currently running process are saved on the
kernel stack

I In kernel mode, they are then saved to the corresponding
process structure

I A scheduling decision takes place
I The registers of the next process to run are restored from its

process structure to kernel stack
I A return-from-trap takes place
I The registers are restored from kernel stack while switching to

user mode

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 28

Limited Direct Execution
(Timer Interrupt)

OS@boot
(kernel mode) Hardware

Initialize trap table
Store addr. of syscall
handler
Store addr. of timer
handler

Start interrupt timer
Start timer
Interrupt CPU in X ms

OS @run (kernel
mode) Hardware Process (user mode)

Process A
…

Timer interrupt
Save regs(A) to kernel
stack (A)
Move to kernel mode
Jump to trap handler

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 29

Limited Direct Execution (cont.)
(Timer Interrupt)

OS @run (kernel
mode) Hardware Process (user mode)

Handle trap
Call switch()…
…save regs(A) to
struct(A)
…restore regs(B) from
struct(B)
…switch to kernel stack
(B)
return-from-trap (into
B)

Restore regs(B) from
kernel stack (B)
Move to user mode
Jump to PC (B)

Process B
…

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 30

The xv6 swtch Function
Source: [xv6b]

Context switch
#
void swtch(struct context **old, struct context *new);
#
Save the current registers on the stack, creating
a struct context, and save its address in *old.
Switch stacks to new and pop previously-saved registers.

.globl swtch
swtch:

movl 4(%esp), %eax
movl 8(%esp), %edx

Save old callee-saved registers
pushl %ebp
pushl %ebx
pushl %esi
pushl %edi

Switch stacks
movl %esp, (%eax)
movl %edx, %esp

Load new callee-saved registers
popl %edi
popl %esi
popl %ebx
popl %ebp
ret

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 31

Creating Processes

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 32

The fork() and wait() Syscalls
On UNIX systems, new processes are created using the fork()
syscall. It has an interesting behavior:
I It creates an almost exact copy of the calling process

I The child gets a copy of data, stack and heap; the text section
is shared

I Open file descriptors are duplicated
I Numerous other properties are inherited – see “man 2 fork”

I It returns twice, once in the parent process and once in the
child process
I In the parent, the return value is the PID of the child; in the

child it is 0 (why?)
I Which process returns first is not deterministic

The wait() syscall enables the parent process to wait for child
termination (and some other state changes – see “man 2 wait”)

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 33

Example for fork() and wait()
Source: [ost], cpu-api/p2.c

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>

int main(int argc, char *argv[])
{

printf("hello world (pid:%d)\n", (int) getpid());
int rc = fork();
if (rc < 0) {

// fork failed; exit
fprintf(stderr, "fork failed\n");
exit(1);

} else if (rc == 0) {
// child (new process)
printf("hello, I am child (pid:%d)\n", (int) getpid());
sleep(1);

} else {
// parent goes down this path (original process)
int wc = wait(NULL);
printf("hello, I am parent of %d (wc:%d) (pid:%d)\n",
rc, wc, (int) getpid());

}
return 0;

}
// Output:
// hello world (pid:22103)
// hello, I am child (pid:22104)
// hello, I am parent of 22104 (wc:22104) (pid:22103)

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 34

The exec() Functions

To start a different program, the child process can use one of the
exec() functions (which are front-ends to the execve() syscall):

I Different options available for parametrization: execl(),
execlp(), execle(), execv(), execvp() and execvpe()

I Replace the current process by loading a new program
I Load code and static data
I Reinitialize heap, stack and other parts of memory
I Run the program with arguments, environment etc.

I Does not return (if no error occurred)

I The fork() and exec() pattern allows to modify the
environment when starting a new program

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 35

Example for exec()
Source: [ost], cpu-api/p3.c

int main(int argc, char *argv[])
{

printf("hello world (pid:%d)\n", (int) getpid());
int rc = fork();
if (rc < 0) {

// fork failed; exit
fprintf(stderr, "fork failed\n");
exit(1);

} else if (rc == 0) {
// child (new process)
printf("hello, I am child (pid:%d)\n", (int) getpid());
char *myargs[3];
myargs[0] = strdup("wc"); // program: "wc" (word count)
myargs[1] = strdup("p3.c"); // argument: file to count
myargs[2] = NULL; // marks end of array
execvp(myargs[0], myargs); // runs word count
printf("this shouldn't print out");

} else {
// parent goes down this path (original process)
int wc = wait(NULL);
printf("hello, I am parent of %d (wc:%d) (pid:%d)\n",

rc, wc, (int) getpid());
}
return 0;

}

// Output:
// hello world (pid:22615)
// hello, I am child (pid:22616)
// 32 123 966 p3.c
// hello, I am parent of 22616 (wc:22616) (pid:22615)

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 36

Function or Syscall?

You may have noticed, that functions and syscalls seem to look the
same so far…

I If it looks the same, how can the system decide what is is?

I Actually, these were all function calls
I A system call is low level: Place arguments in registers, invoke

the trap instruction, retrieve returned data…
I The C library offers functions which perform these steps, as for

instance fork() and the different variants of exec()

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 37

Appendix

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 38

Bibliography
[ADAD18] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau, Operating Systems: Three Easy Pieces, 1.00

ed., Arpaci-Dusseau Books, August 2018, Available online: http://ostep.org.

[ost] GitHub.com, remzi-arpacidusseau/ostep-code: Code from various chapters in OSTEP
(http://www.ostep.org), https://github.com/remzi-arpacidusseau/ostep-code.

[SR13] W. Richard Stevens and Stephen A. Rago, Advanced programming in the unix environment, 3 ed.,
Addison-Wesley professional computing series, Addison-Wesley, 2013.

[xv6a] GitHub.com, mit-pdos/xv6-public: xv6 OS, proc.h,
https://github.com/mit-pdos/xv6-public/blob/master/proc.h.

[xv6b] GitHub.com, mit-pdos/xv6-public: xv6 OS, swtch.S,
https://github.com/mit-pdos/xv6-public/blob/master/swtch.S.

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 39

http://ostep.org
https://github.com/remzi-arpacidusseau/ostep-code
https://github.com/mit-pdos/xv6-public/blob/master/proc.h
https://github.com/mit-pdos/xv6-public/blob/master/swtch.S

	CPU Virtualization
	Introduction to Processes
	Limited Direct Execution
	Creating Processes
	Appendix

