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Basic Scheduling
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Introduction

We understand the basic mechanisms used by the OS for process
switching:

I Limited direct execution

I Timer interrupts

But when and why does an OS switch processes?

I Such decisions are part of scheduling , the responsible OS

component is the scheduler

I OSes use di�erent strategies or policies (also called

disciplines ) for scheduling

I Optimal scheduling can be quite complicated
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Scheduling Policies: Assumptions

We will now evaluate di�erent scheduling policies. To do so, we will
make the following (unrealistic!) assumptions for now:

1. All jobs1 require the same amount of time to run

2. All jobs arrive at the same time

3. When running, jobs are not interrupted until �nished

4. We know exactly how long each job has to run for completion

5. They perform only work on the CPU, no I/O

1A process is often called a job in scheduling.
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Scheduling Metric 1: Tturnaround

Often, when evaluating things, we need a metric. Let us de�ne our
�rst scheduling metric:

De�nition
Tturnaround = Tcompletion − Tarrival

The turnaround time of a job is the time when it completes
minus the time at which it arrived.

Note: For now, Tarrival = 0, thus Tturnaround = Tcompletion

(Assumption 2).
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Scheduling Policy 1: FIFO

FIFO scheduling means: First In, First Out (sometimes also

FCFS : First Come, First Served).

Example: All jobs take 10 secs, job A randomly run �rst.

0 20 40 60 80 100 120
Time

A B C

Figure: A FIFO Scheduling Example
Courtesy of [ADAD18]

Tturnaround for A, B and C: 10, 20, 30.

Average: 10+20+30

3
= 20
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The Problem with FIFO
If we relax Assumption 1 (all jobs require the same amount of

time), FIFO runs into trouble ( convoy e�ect , [BGMP79]):

Example: Job A now takes 100 secs.

0 20 40 60 80 100 120
Time

A B C

Figure: The Issue with FIFO
Courtesy of [ADAD18]

Tturnaround for A, B and C: 100, 110, 120.

Average: 100+110+120

3
= 110
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Scheduling Policy 2: SJF

Without further relaxing assumptions, a simple idea solves the
convoy problem: SJF or Shortest Job First scheduling:

0 20 40 60 80 100 120
Time

B C A

Figure: A SJF Scheduling Example
Courtesy of [ADAD18]

Tturnaround for A, B and C: 120, 10, 20.

Average: 120+10+20

3
= 50
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The Problem with SJF
I� Assumption 2 (all jobs arrive at the same time) holds, SJF can
be proven optimal. As this is not realistic, we drop Assumption 2:

Example: Jobs B and C now arrive late.

0 20 40 60 80 100 120
Time

A B C
[B,C arrive]

Figure: SJF with Late Arrival
Courtesy of [ADAD18]

Tturnaround for A, B and C: 100, 100 (110− 10), 110 (120− 10).

Average: 100+100+110

3
= 103.33

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 10



Interlude: Preemptive Scheduling

So far, we have assumed that the scheduler may not interrupt a
running job (Assumption 3). To develop better scheduling policies,
we need to drop this assumption.

De�nition
A preemptive scheduler is a scheduler which can interrupt a
running job. To do so, it uses the mechanisms we have
introduced earlier.
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Scheduling Policy 3: STCF
Without Assumption 3, jobs may be interrupted any time. Using
this, we �nd the STCF (Shortest Time-to-Completion First)
policy:

Example: When jobs B and C arrive, A is preempted.

0 20 40 60 80 100 120
Time

A B C A
[B,C arrive]

Figure: A STCF Scheduling Example
Courtesy of [ADAD18]

Tturnaround for A, B and C: 120, 10 (20− 10), 20 (30− 10).

Average: 120+10+20

3
= 50
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Scheduling Metric 2: Tresponse

If we could rely on Assumption 4 (knowing how long a job takes),
STCF would be a great policy. However:

I In reality, we only rarely know the job duration

I Nowadays, systems are expected to be interactive

Thus, for general purpose OSes,2 a di�erent metric becomes
important as well:

De�nition
Tresponse = Tfirstrun − Tarrival

The response time of a job is the di�erence between the time
it is �rst scheduled and the time at which it arrived.

2There are also specialized OSes for batch- and realtime processing.
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Revisiting STCF

0 20 40 60 80 100 120
Time

A B C A
[B,C arrive]

Figure: STCF Again

Tresponse : A = 0, B = 0, C = 10, Average: 3.33.

What happens when 3 jobs arrive at the same time? What is the
problem with STCF?
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Scheduling Policy 4: Round Robin
Simple idea: do not complete jobs but run them for a time slice (or
scheduling quantum). Time slices are multiples of the timer
interrupt.

0 5 10 15 20 25 30
Time

A B C

Figure: SJF Again

0 5 10 15 20 25 30
Time

ABCABCABCABCABC

Figure: Round Robin Scheduling
Courtesy of [ADAD18]
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Scheduling Policy 4: Round Robin
(cont.)

Example (previous slide): Jobs A, B and C arrive at time 0 and run
for 5 secs each.

Metrics for SJF scheduling
Tturnaround : A = 5, B = 10, C = 15, average: 10.
Tresponse : A = 0, B = 5, C = 10, average: 5.

Metrics for round robin scheduling
Tturnaround : A = 13, B = 14, C = 15, average: 14.
Tresponse : A = 0, B = 1, C = 2, average: 1.
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Amortization

For round robin, the length of the time slice is relevant:

I Responsiveness becomes better, the shorter the time slice

I But: shorter time slices lead to increased context-switching
overhead

Amortization helps in solving this fundamental tradeo�.

Example: Assuming cost for a context-switch is 1 ms.

I If length of time slice is 10 ms, 10% of the time are spent in
context switches

I Increasing time slice to 100 ms: reduces overhead to ∼ 1%
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Considering I/O

Finally, programs which do not perform any I/O at all seldom exist
in practice. We must drop Assumption 5. During I/O, a job is
blocked and cannot use the CPU. Thus:

I The scheduler must schedule a di�erent job when I/O starts

I When I/O �nishes, the scheduler must again decide about
scheduling
I The �rst job
I The currently running job
I A di�erent job
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STCF I/O Example

For this example, assume two jobs, A and B, arriving at the same
time and requiring 50 ms of CPU time each. A makes an I/O
request every 10 ms which takes 10 ms to complete.

0 20 40 60 80 100 120 140
Time

A A A A A B B B B B

CPU

Disk

Figure: STCF Waiting for I/O
Courtesy of [ADAD18]

Tturnaround : A = 90, B = 140, average: 115.
Tresponse : A = 0, B = 90, average: 45.
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STCF I/O Example (cont.)

Solution: Treat CPU usage of A as individual sub-jobs. At start,
the STCF scheduler then has the choice to run A with 10 ms or B
with 50 ms job duration.

0 20 40 60 80 100 120 140
Time

A A A A AB B B B B

CPU

Disk

Figure: STCF with Overlapping
Courtesy of [ADAD18]

Tturnaround : A = 90, B = 100, average: 95.
Tresponse : A = 0, B = 10, average: 5.
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Multi-Level Feedback

Queues

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 21



Recap

Until now, we have made some observations regarding scheduling:

I Nothing is known about arrival time or duration of a job

I Achieving good turnaround- and response time simultaneously
is desired but hard in practice
I STCF would be optimal, if job duration would be known
I Round robin is good for interactivity but terrible for

turnaround time

I We have di�erent types of workload: Batch (i.e. long running,
non-interactive) and interactive jobs
I It is unknown (at least so far. . . ) to which type a job belongs
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Motivating Multi-Level (Feedback)
Queue Scheduling

MLFQ scheduling tries to optimize turnaround- and response time
at the same time. For this, two main ideas are applied:

1. Use more than one queue for scheduling

2. Observe the behavior of a job and adjust its priority
continuously

Using more than one queue enables a classi�cation of jobs using
priorities.
Observing a process gives information about its runtime behavior:
Is it using only the CPU? Does it perform a lot of I/O? This helps
in adjusting priority. Learn from the past to predict the future.
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MLFQ Example
In this example, there are 4 jobs: A and B (high prio) in queue 8, C
(medium prio) in queue 4 and D (low prio) in queue 1. Queue
numbering is not relevant.

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

[Low Priority]

[High Priority]

D

C

A B

Figure: Example for MLFQ with 8 Queues
Courtesy of [ADAD18]
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Basic Rules

In the following, we assume these basic rules when discussing
MLFQ scheduling:

I There is a number of distinct queues, each with a di�erent
priority

I A job can only be in a single queue at any time

I There can be more than one job per queue; these are
scheduled using round robin

I Ready jobs in queues with higher priority are run �rst

In summary:

Rule 1 If Prio(A) > Prio(B): Run A

Rule 2 If Prio(A) = Prio(B): Run A and B in round robin
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Key Question: Adjusting Priority

MLFQ adjusts the priority of a job due to its observed behavior:

I A job performing a lot of I/O gets a high priority

I A job using the CPU a lot gets a low priority

Let us add some rules for this:

Rule 3 A new job is placed in the queue with the highest
priority

Rule 4a If it uses up its whole time slice, its priority is reduced

Rule 4b If it yields the CPU before using up the time slice, its
priority stays the same
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Example: Batch Job

Figure: MLFQ Example for a Single Batch Job
Courtesy of [ADAD18]
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Example: Batch and Interactive Job

Figure: MLFQ Example for Batch- and Interactive Jobs
Courtesy of [ADAD18]

Notice: MLFQ �rst assumes a job to be short. If it is, it completes
quickly � if not, it will move down the queues. Thus, MLFQ
approximates SJF!
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Example: Batch and I/O Jobs

Figure: MLFQ Example Batch- and I/O Intensive Job
Courtesy of [ADAD18]

Due to Rule 4b, the I/O intensive job keeps its high priority (and
thus its interactivity).
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Problem 1: Starvation

Figure: MLFQ Starvation
Courtesy of [ADAD18]

Too many interactive jobs may starve a batch job.
Or: a batch job might change behavior and become interactive
(again). . .
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Solution: Priority Boosts

A simple solution for starvation is to periodically boost the priority
of all jobs:

Rule 5 After a given time period, move all jobs to the queue
with the highest priority

This solves two problems at once:

I No starvation: Every job periodically runs in the queue with
the highest priority

I Behavior change: A batch job can become interactive again
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Example: Priority Boosts

Figure: MLFQ with Priority Boosts
Courtesy of [ADAD18]

The batch job is moved to Q2 due to periodic priority boosts.
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Problem 2: Gaming the Scheduler

Figure: Gaming MLFQ
Courtesy of [ADAD18]

Gaming is an attack on the scheduler, in which a job cleverly
yields its time slice to gain a lot of total CPU time. When could
this be a problem?
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Solution: Better CPU Accounting

Rules 4a and 4b enable gaming of the scheduler. The solution is
better accounting: Track the CPU time spent over multiple context
switches and move a job to the next priority queue if it has used up
all assigned time.

We thus change the rules:

Rule 4a If it uses up its whole time slice, its priority is reduced

Rule 4b If it yields the CPU before using up the time slice, its
priority stays the same

Rule 4 When a job uses up all its assigned time at a given
priority (regardless how often it has yielded the CPU),
it is moved to the next lower priority
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Example: CPU Accounting

Figure: MLFQ with Priority Boosts
Courtesy of [ADAD18]

The gaming job is moved to Q0 due to better CPU accounting.
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MLFQ Parametrization

MLFQ is an advanced scheduling policy which improves
turnaround- and response time. However, for practical
implementation, many questions must be solved:

I How many queues?

I How long are the time slices? Are they di�erent per queue?

I At which interval should priority boosts occur?
If too long, jobs may starve; if too short, response time may
degrade. . .

I Are all jobs run in all queues? Are some queues reserved for
the OS?

I Can the user in�uence scheduling decisions?
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Proportional Share

Scheduling
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Proportional Shares: Basic Idea

Di�erent idea: Do not optimize for turnaround or response time,
but try to guarantee a certain amount of CPU time for each job.
This is called proportional-share or fair-share scheduling.

One solution: Measure CPU time per job and distribute it over all
running jobs. Di�cult to implement.

Another idea: Use randomness!3 This is easier to implement (needs
almost no state) and fast.

3+ Hint: Using randomness is often a good solution � keep it in mind!
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Lottery Scheduling
In lottery scheduling , each job has a certain amount of tickets.
The percent of tickets a job has, represents its share of CPU time.
Tickets are numbered. Periodically (e.g. every time slice), a ticket
number is drawn at random and the job holding the ticket is
scheduled.

Example:
Job A has tickets 0 . . . 74 and job B tickets 75 . . . 99.
The scheduler draws the following numbers:

63 85 70 39 76 17 29 41 36 39 10 99 68 83 63 62 49 49

This corresponds to the following schedule:

A A A A A A A A A A A A A A

B B B B
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Implementing Lottery Scheduling

int counter = 0;
int winner = random() % totaltickets; // get winner
struct node_t *current = head;

// loop until the sum of ticket values is > the winner
while (current) {

counter = counter + current−>tickets;
if (counter > winner)

break; // found the winner
current = current−>next;

}

// current is the winner: schedule it...

Source: ostep-code/cpu-sched-lottery/lottery.c

head Job:A
Tix:100

Job:B
Tix:50

Job:C
Tix:250 NULL

Figure: Lottery Implementation Using (Sorted) List
Courtesy of [ADAD18]
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Lottery Fairness

Example: 2 jobs, 100 tickets each, same job length.

Unfairness Metric: U =
Tcompletion(A)
Tcompletion(B)

Figure: Fairness of Lottery Scheduling
Courtesy of [ADAD18]
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Stride Scheduling

Stride scheduling is a deterministic ticket-based policy. Idea: Use
inverse proportion of ticket shares to decide, which job to run. We
de�ne:

Stride S(job) = C
Tickets(job)

Where C is the stride constant (some large number)
and Tickets(x) the number of tickets a job has

Pass P(job) is the total amount of accumulated stride of a
job

The scheduler then simply runs the job with the lowest pass value
and increments it with the job's stride.

Problem compared to lottery scheduling: Global state (what if a
new job enters?)
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Stride Example

C = 10000
Tickets per job: A = 100, B = 50, C = 250
Stride per job: A = 100, B = 200, C = 40

P(A) P(B) P(C ) Job run

0 0 0 A
100 0 0 B
100 200 0 C
100 200 40 C
100 200 80 C
100 200 120 A
200 200 120 C
200 200 160 C
200 200 200 . . .
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Linux Scheduling
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Linux Completly Fair Scheduler

The Linux completly fair scheduler (CFS) is a highly e�cient

scheduler, trying to minimize overhead. It has no traditional time
slices but adjusts them dynamically depending on the number of
jobs. A good overview is given in [Jon].

Basic idea: virtual runtime (vruntime) is accumulated per job, the
job with lowest vruntime is scheduled next.

Problem: When to schedule the next job? For this, CFS uses
parameters and some clever weighting to decide.
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CFS Basic Idea

0 50 100 150 200 250
Time

A B C D A B C D A B A B A B

Figure: Completly Fair Scheduling, Basic Idea
Courtesy of [ADAD18]
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CFS Parameters

The two most important parameters for CFS are: sched_latency
and min_granularity.4 (See: [linb],[linc])

sched_latency: Time before considering a context switch

Defaults to 6ms · (1+ log2(ncpus)).
Example: 18ms.

min_granularity: When there are many jobs, time slices get too
small. This is the minimal value used in every case.

Defaults to 0.75ms · (1+ log2(ncpus)).
Example: 2.25ms.

4The current values (nanoseconds) for our machine can be found in
/proc/sys/kernel/sched_latency_ns and
/proc/sys/kernel/sched_min_granularity_ns.
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CFS Weighting

CFS supports UNIX nice levels −20 (highest) to 19 (lowest) for
modifying job priorities.5 Instead of using priority queues, a weight
value (see next slide) is applied for calculating the

e�ective time slice of a job (k is job number, n is total job count):

time_slicek =
weightk∑n−1

n=0 weighti

· sched_latency

Additionally, the weight of a job must also be considered when
calculating vruntime:

vruntimek = vruntimek +
weight0
weightk

· curtimek

(weight
0
is weight at priority 0, curtimek is the time the job has

spent in the last time slice)

5See �man nice� for details.
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CFS Weight Constants

/*
* Nice levels are multiplicative, with a gentle 10% change for every
* nice level changed. I.e. when a CPU−bound task goes from nice 0 to
* nice 1, it will get ~10% less CPU time than another CPU−bound task
* that remained on nice 0.
*

* The "10% e�ect" is relative and cumulative: from _any_ nice level,
* if you go up 1 level, it's −10% CPU usage, if you go down 1 level
* it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
* If a task goes up by ~10% and another task goes down by ~10% then
* the relative distance between them is ~25%.)
*/
const int sched_prio_to_weight[40] = {
/* −20 */ 88761, 71755, 56483, 46273, 36291,
/* −15 */ 29154, 23254, 18705, 14949, 11916,
/* −10 */ 9548, 7620, 6100, 4904, 3906,
/* −5 */ 3121, 2501, 1991, 1586, 1277,
/* 0 */ 1024, 820, 655, 526, 423,
/* 5 */ 335, 272, 215, 172, 137,
/* 10 */ 110, 87, 70, 56, 45,
/* 15 */ 36, 29, 23, 18, 15,
};

Source: [lina]
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Example

Assuming two jobs, A (nice level −5) and B (normal nice level, 0).
Thus: weightA = 3121 and weightB = 1024. sched_latency is
18ms.

time_sliceA = 3121

(3121+1024) · 18 ≈ 3

4
· 18 ≈ 13.55ms

time_sliceB = 1024

(3121+1024) · 18 ≈ 1

4
· 18 ≈ 4.45ms

Note: An interesting property of the weights is that they preserve
proportionality: If the nice levels would have been 5 and 10, that
jobs would have been scheduled in the same manner!
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Jobs Sleeping or Waiting for I/O

There is an issue when simply choosing the process with the lowest
vruntime: Jobs which are sleeping or waiting for I/O do not
aggregate vruntime. Thus, when such a job wakes up, it would be
scheduled for a long time in order to catch up!

CFS handles this by modifying vruntime when a job wakes up: it
sets the value to the minimum value found for all jobs in the
system.
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Multiprocessor

Scheduling
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Introduction

So far, we have only looked at schedulling on a single CPU. With
multiple CPUs (think todays multicore architectures), reality is
much more complex. Here we provide only a short overview of
multiprocessor scheduling to achieve a basic understanding.

Some of the main problems are:

I Issues due to CPU caches
I Cache coherence

I Cache a�nity

I Synchronization issues, e.g. when all CPUs share a

scheduling queue6

I Increased schedulling overhead

I . . .

6Synchronization will be an important topic in this course later.
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CPU Caches

Memory

CPU CPU

Cache Cache

Bus

Figure: Two CPUs with Caches and Shared Memory
Courtesy of [ADAD18]

Note: In practice, multiple caches form a hierarchy of caches.
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CPU Cache Issues

Cache Coherence : It must be ensured that all caches maintain the
same state regarding a data item. E.g.

I An item is read/manipulated on CPU1 and stored in the local
cache

I What if the same value is read or written on CPU2 (maybe
later)?

I Caches need to either update or invalidate their state correctly

Cache A�nity : When a process runs on a CPU for some time, it
builds up a lot of state in the cache. It will often make sense to
reschedule it on the same CPU as otherwise performance may
degrade.
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Single- and Multi-Queue Scheduling

Scheduling all jobs for all CPUs in a single queue is possible. There
are some issues however:

I Scalability/overhead: the queue requires synchronization

I Work required to maintain cache a�nity

Another approach is to use multiple queues, e.g. one per CPU. This
reduces synchronization overhead and �xes cache a�nity, but:

I More complex implementation

I Introduces load imbalance (what if a CPU is done with all of
its jobs?)

In practice, both approaches can be found.
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Appendix
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