
Universit�e de CaenD�epartement d'informatique �Ecole doctorale SIMEMUFR de SciencesG�en�eration �a d�elai polynomial pour leprobl�eme SATTH�ESEpr�esent�ee et soutenue publiquement le 19 janvier 2000pour l'obtention duDoctorat de l'universit�e de Caen(sp�ecialit�e informatique)parEmmanuel BenoistComposition du juryRapporteurs : Hans Kleine B�uning Universit�at-Gesamthochschule PaderbornMarie-Catherine Vilarem Universit�e de MontpellierExaminateurs : Malik Ghallab LAAS Toulouse�Etienne Grandjean Universit�e de Caen (co-directeur)Jean-Jacques H�ebrard Universit�e de Caen (co-directeur)Vangelis Paschos Universit�e Paris-DauphineGroupe de Recherches en Informatique, Image, Instrumentation de Caen - CNRS UPRESA 6072

Mis en page avec la classe thloria.

Table des matièresIntroduction générale 11 La problématique . 11.1 Intelligence arti�cielle et logique 11.2 Le problème SAT 21.3 NP-complétude du problème de satisfaisabilité 31.4 Formules de Horn et extensions 41.5 Génération à délai polynômial 62 Les résultats . 72.1 Génération à délai polynômial 72.2 Formules Horn étendues (simples) 82.3 Formules ordonnées 9Partie I Le problème SAT et la génération à délaipolynomial 11Chapitre 1Introduction1.1 Préliminaires . 131.2 Dé�nitions . 141.3 Algorithme générique 161.4 Sur quelles formules appliquer cet algorithme 17Chapitre 2Utilisation de la résolution unitaire seule2.1 Introduction . 192.2 Formules de Horn . 21i

Table des matières2.3 Formules Horn-renommables 212.4 Formules binaires . 222.5 Formules équilibrées 252.6 Conclusion . 26Chapitre 3Générer en utilisant un ordre sur les variables3.1 Introduction . 273.2 Formules presque Horn 283.3 Formules q-Horn . 35Chapitre 4Générer en utilisant les résultats sur SAT4.1 Introduction . 374.2 Formules Horn généralisées 374.3 Hiérarchies de Pretolani 39Chapitre 5Impossibilité de générer à délai polynômial5.1 Classes trivialement satisfaisables 435.2 Quad . 445.3 Hiérarchies f
g et f�g 46Chapitre 6ConclusionPartie II Formules Horn étendues 49Chapitre 1PrésentationChapitre 2Les formules Horn étendues2.1 Présentation . 532.2 Dé�nitions . 54ii

2.3 Satisfaisabilité et génération à délai polynômial . . . 552.4 Origine . 582.4.1 Préliminaires 582.4.2 Théorème de Chandrasekaran 592.4.3 Motivations des formules Horn étendues . . . 602.4.4 Exemple . 612.5 Conclusion . 62Chapitre 3Les formules Horn étendues et élargies simples3.1 Introduction . 633.2 Dé�nitions . 643.3 Satisfaisabilité et génération à délai polynômial . . . 663.4 Agrégats . 673.5 Reconnaissance de formules Horn élargies simples . . 713.6 Calcul des arborescences acceptables 763.7 Reconnaissance des formules Horn étendues simples . 803.8 Un cas facile . 833.9 Calcul des arborescences viables 85Chapitre 4ConclusionPartie III Formules ordonnées et presque ordon-nées 91Chapitre 1Formules ordonnées1.1 Présentation . 931.2 Dé�nitions . 941.3 Satisfaisabilité et génération à délai polynômial . . . 951.4 Algorithme de reconnaissance 961.5 Formules ordonnées-renommables 97iii

Table des matièresChapitre 2Formules presque ordonnées2.1 Présentation . 1032.2 Génération à délai polynômial 1072.3 Reconnaissance des formules presque ordonnées . . . 112Conclusion et Perspectives 115Index 119Bibliographie 121

iv

Table des �gures1.1 Algorithme génération 172.1 Graphe d'implication de F3 244.1 Algorithme PSAT . 416.1 Génération à délai polynômial : tableau provisoire 472.1 La clause C1 est Horn étendue par rapport à T 552.2 Arborescence T dont les arcs sont étiquetés par les va-riables de F1 . 552.3 F2 est Horn étendue par rapport à T 562.4 Noyau(F2) est Horn étendue par rapport à T 0 573.1 Arborescence T . 653.2 Arborescence T . 663.3 Forêt associée aux agrégats de F0 703.4 Procédure OrderPos . 713.5 T : Une arborescence acceptable pour A1 733.6 Construction de R(t) . 743.7 T est une réalisation arborescente de S 0 763.8 Procédure Construit Contraintes 793.9 Procédure Construit Contraintes 1 861.1 Procédure Inclusion . 971.2 Graphe G(F2) . 991.3 Procédure Construit-G(F) 1022.1 Graphe G(G1) . 1062 Génération à délai polynômial 1163 Graphe d'inclusion des principales classes étudiées danscette thèse . 117v

Table des �gures

vi

Introduction générale1 La problématique1.1 Intelligence arti�cielle et logiqueLa logique a été très étudiée au �l des siècles, que ce soit par lesphilosophes ou les mathématiciens, et maintenant par les informaticiens.Dans cette thèse, nous nous sommes intéressés plus particulièrement àl'aspect symbolique de la logique. Nous voulons utiliser la logique sym-bolique pour modéliser et résoudre des problèmes di�ciles (et souventmême impossibles) à résoudre pour un être humain.En informatique, la logique symbolique est particulièrement utiliséeen Intelligence Arti�cielle [13, 25, 43], elle semble en e�et pouvoir mo-déliser un grand nombre de phénomènes. Durant la seconde moitié desannées 1960 l'Intelligence Arti�cielle a beaucoup pro�té des progrès faitsdans le domaine de la démonstration automatique. L'intérêt pour la dé-monstration automatique était dû pour une part à la prise de consciencede ce que les déductions logiques sont une part importante de l'intelli-gence humaine, mais aussi aux techniques de démonstration automatiquede théorèmes mises au point à la �n des années 1960. En parallèle auxprogrès techniques sur la démonstration automatique de théorèmes, ontrouve les progrès dans l'application de ces techniques pour résoudre di-vers problèmes de l'intelligence arti�cielle.Durant les années 70, les systèmes experts ont popularisé les systèmesà bases de règles. De nombreux systèmes de résolution de problèmesconcrets ont ainsi pu être construits. Le principe de ces systèmes est derecueillir les connaissances d'un expert d'un domaine bien précis, pouren faire des règles. Ces règles sont ensuite appliquées aux cas qui doiventêtre étudiés.Depuis quelques années, une autre utilisation de la logique est faitepar les chercheurs en Intelligence Arti�cielle [7, 17, 22]. On utilise de nou-veaux résultats en logique (principalement propositionnelle) pour construiredes systèmes de résolution de problèmes basés non plus sur des règles sai-sies par un expert, mais sur le résultat d'observations passées. On se sertici des résultats passés pour construire des règles qui servent à prédire lefutur. Par exemple Boros et al. [7] présentent le système LAD (Logical1

Introduction généraleAnalysis of Data) qui permet de classi�er de nouvelles observations, de fa-çon que cette classi�cation soit cohérente avec celle des observations pas-sées. Les informations utilisées par ce système consistent en une archivedes observations passées et de leur classi�cation. Ce type de systèmespermet de résoudre des problèmes concrets. Les banques peuvent s'enservir pour déterminer si elles accordent ou non un crédit à quelqu'un,elles se servent dans ce cas des informations sur l'âge, la profession, lesrevenus des personnes. Les médecins peuvent s'en servir pour déterminerle caractère malin d'une tumeur, en utilisant des paramètres telles quela taille des cellules, l'âge du patient, la couleur des cellules . . .Le développement de l'intelligence arti�cielle et en particulier du DataMining semble donc lié aux recherches qui sont e�ectuées sur les aspectsthéoriques de la logique, et en particulier sur la logique propositionnelle.1.2 Le problème SATDans cette thèse, nous nous intéressons à la logique propositionnelle,et plus précisément au problème central de cette logique qui est l'étudede la satisfaisabilité d'une formule donnée.Nous allons maintenant considérer un exemple très simple pour mon-trer comment la logique propositionnelle peut être utilisée pour modéli-ser des problèmes. Comme nous n'avons pas encore dé�ni les notions debases, le lecteur devra pour le moment se référer à son intuition.Nous allons étudier les faits suivants :1. Je n'arrive pas en retard au bureau ;2. Si je me lève tard et que je ne roule pas vite, alors j'arrive en retardau bureau ;3. Si je me lève tard et que je roule vite, alors je ne suis pas en retardau bureau ;4. Si je roule vite, et que la police fait un contrôle de vitesse, alors jen'ai plus de permis ;5. Je dois garder mon permis.On recherche une situation dans laquelle tous ces faits sont véri�és.Comme ces faits sont donnés en français, nous avons à les représenteravec des symboles. On va décrire L l'action �Je me lève tard�, A l'ac-tion �J'arrive en retard au bureau�, R �Je roule vite�, Po �La policee�ectue un contrôle de vitesse� et Pe �Je garde mon permis�. Toutesces variables peuvent prendre la valeur Vrai ou la valeur Faux. De plus,2

1. La problématiquenous avons besoin de quelques symboles logiques ^ représente ET, _ re-présente OU, : représente NON et ! représente IMPLIQUE. Les faitsénoncés ci-dessus peuvent donc se traduire de la manière suivante.1. :A2. L ^ :R! A3. L ^R! :A4. R ^ Po! :Pe5. PeÀ l'aide de règles de transcriptions, on peut transformer cette formuleen une formule ne contenant qu'une conjonction de clauses, où chaqueclause est elle même une disjonction de symboles, précédés ou non de lanégation. Cela nous donne une formule en Forme Normale Conjonctive(CNF en anglais).1. :A2. :L _R _A3. :L _ :R _ :A4. :R _ :Po _ :Pe5. PeRésoudre le problème de la satisfaisabilité d'une formule (dit problèmeSAT) revient à regarder s'il est possible de trouver une valeur à chacundes symboles de telle façon que toutes les clauses soient véri�ées en mêmetemps. Ici, une des solutions possibles est L = faux, A = faux, R =vrai, Po = faux, Pe = vrai. Elle signi�e : Je ne me lève pas en retard,je n'arrive pas en retard, je roule vite, la police n'est pas là et je gardemon permis. Cette solution véri�e les contraintes posées, mais elle n'estpas satisfaisante (il est stupide de se lever tôt et de rouler vite tout demême).1.3 NP-complétude du problème de satisfaisabilitéLa logique propositionnelle peut donc être utilisée pour modéliser detrès nombreux problèmes. Malheureusement, il n'est actuellement paspossible de résoudre e�cacement tous ces problèmes. Il n'existe pas d'al-gorithme polynômial pour résoudre le problème de la satisfaisabilité d'uneformule quelconque. Cook [16] a de plus prouvé, que dans la classe detous les problèmes dont on peut tester une solution en temps polynômial3

Introduction générale(la classe NP), le problème de la satisfaisabilité fait partie des problèmesles plus di�ciles (qui sont appelés NP-complets). Si on connaît un algo-rithme e�cace pour résoudre le problème de satisfaisabilité, alors il estpossible de construire des algorithmes e�caces pour tous les problèmesde la classe NP.1.4 Formules de Horn et extensionsDéterminer la satisfaisabilité d'une formule est un problème di�ciledans le cas général, il est utile d'étudier des classes de formules pourlesquelles le test de satisfaisabilité peut se faire en temps polynômial[36, 37]. Parmi l'ensemble des classes pour lesquelles on connaît un al-gorithme polynômial pour résoudre le problème SAT, la plus importanteest sans doute la classe des formules de Horn. Il s'agit des formules enforme normale conjonctive dont chaque clause contient au plus un littéralpositif.Par exempleF = ff:x1; x2;:x4g, f:x1; :x3g, fx5gg est une formulede Horn.Le test de satisfaisabilité d'une formule de Horn est basé sur la mé-canique bien connue de la résolution unitaire. On remarque que si uneformule F contient la clause unitaire fxg (resp. f:xg), alors la seule va-leur possible pour x est vrai (resp. faux), on peut donc simpli�er F ena�ectant cette valeur à la variable x. On dé�nit Fx (resp. F:x) comme laformule F dans laquelle on a e�acé toutes les clauses contenant x (resp.:x) et telle que :x (resp. x) est ôté de toutes les clauses qui le conte-naient. Ces simpli�cations de F correspondent aux simpli�cations quel'on fait lorsque l'on a�ecte la valeur vrai (resp. faux) à la variable x. Onpeut aisément prouver que si la formule F contient la clause fxg (resp.f:xg), F sera satisfaisable si et seulement si, la formule Fx (resp. F:x)est satisfaisable et ne contient pas la clause vide.Par exemple si F = ffx1; x2g, f:x1; x3g, fx4; x5gg, alors Fx1 =ffx3g; fx4; x5gg.Si on répète cette simpli�cation (Fx contient peut-être une clauseunitaire), on obtient une formule dont toutes les clauses sont de longueurdeux au moins. On va appeler cette formule Noyau(F). F est satis-faisable, si et seulement si Noyau(F) est satisfaisable et la résolutionunitaire n'a pas généré de clause vide. Ce processus peut être e�ectué entemps linéaire pour toute formule F .Pour les formules appartenant à la classe Horn, la résolution unitaireest su�sante pour déterminer la satisfaisabilité de F . En e�et, Noyau(F)(dont toutes les clauses sont de longueur supérieure ou égale à deux) estsatisfaisable puisque si on donne la valeur faux à toutes les variables decette formule, toutes les clauses sont satisfaites (chacune est moins delongueur 2 et contient au plus un littéral positif, donc chacune contientau moins un littéral négatif). Tester la satisfaisabilité d'une formule Horn,4

1. La problématiquerevient donc à tester si la résolution unitaire sur cette formule a généréla clause vide.Le renommage d'une formule F est obtenu en choisissant un ensemblede variables U et en remplaçant pour tout x 2 U les occurrences de x par:x et les occurrences de :x par x. L'intérêt de cette manipulation vientde ce qu'elle ne change pas la satisfaisabilité de la formule, ni même lenombre de solutions ; si la formule originale admet un modèle, alors laformule renommée admet commemodèle le modèle de la formule originalerenommé.Si on peut trouver un renommage qui transforme une formule F enune formule appartenant à une classe polynômiale, alors on peut tester lasatisfaisabilité de F en temps polynômial. Pour la classe Horn, il existedes algorithmes linéaires [31, 38] permettant de tester si une formule peutse renommer en une formule de Horn.D'autres extensions ont été proposées autour des formules de Horn.Chandru et Hooker [12] ont présenté la classe des formules Horn éten-dues, pour laquelle le test de satisfaisabilité est exactement le même quepour les formules de Horn, c'est à dire uniquement basé sur la résolutionunitaire. Malheureusement, il n'existe actuellement aucun algorithme po-lynômial permettant de tester si une formule est Horn étendue. C'estpourquoi, Swaminathan et Wagner [46], ont présenté les formules Hornétendues simples qui elles aussi admettent le même algorithme pour tes-ter si une formule est satisfaisable, mais pour laquelle ils donnent unalgorithme de reconnaissance qui est quadratique. Conforti et Cornuéjols[14, 15] ont présenté les formules équilibrées qui étendent elles aussi lesformules de Horn. Pour les formules équilibrées, le test de satisfaisabilitése fait aussi de la même façon que pour les formules de Horn, à l'aide dela résolution unitaire.Les formules de Horn ont aussi été étendues dans d'autres directions.Par exemple Yamasaki et Doshita [48] ont dé�ni une classe de formulesappelées depuis Horn généralisées. Kleine Büning [35] a donné un testde satisfaisabilité pour cette classe basé sur la 2-résolution et dont lacomplexité est quadratique. Gallo et Scutella [27] ont étendu cette classeen une hiérarchie : les classes �k (k � 1). Kleine Büning [35] a prouvé quel'on peut tester la satisfaisabilité d'une formule appartenant à la classe�i en utilisant la (i + 1)-résolution. Malheureusement, Eiter et al. [23]ont prouvé que tester si une formule est �k-renommable est NP completpour tout k supérieur au égal à 1.D'autres classes étendent les formules de Horn. On peut citer les hié-rarchies f
g et f�g présentées par Dalal et Etherington [20] ainsi quela classe Quad présentée par Dalal [19], mais les méthodes utilisées pourtester la satisfaisabilité de ces formules sont spéci�ques à ces classes etsont éloignées de celles utilisées pour Horn. 5

Introduction générale1.5 Génération à délai polynômialGénérer toutes les solutions qui satisfont un ensemble de contraintesest un problème très étudié en algorithmique combinatoire. Par exemplela théorie des graphes o�re de nombreux problèmes intéressants à étudierde ce point de vue. Johnson et al [33] ont étudié la génération d'ensemblesmaximaux indépendants. Read et Tarjan [42], Gabon et Myers [26] ouShioura et al. [45] se sont intéressés aux arbres couvrants des graphesnon orientés. Hariharan et al. [30] ont quant à eux étudié la générationdes arbres couvrants des graphes orientés. Kalvin et Varol [34], Pruesseet Ruskey [41] ou Can�eld et Williamson [9] ont étudié comment onpouvait générer e�cacement tous les tris topologiques pour un ordrepartiel donné.Il a fallu trouver une nouvelle notion pour décrire la complexité detels algorithmes. En e�et, dans les cas les plus intéressants, le nombre desolutions à générer est potentiellement exponentiel en fonction de la taillede la donnée. C'est le cas pour les ensembles maximaux indépendants oupour les solutions d'une formule de logique propositionnelle. La notion deperformance que nous utiliserons dans cette thèse devra tenir compte decette remarque. Johnson et al [33] ont proposé une notion de complexité,qu'ils ont appelée génération à délai polynômial .Un algorithme génère les solutions d'un problème à délai polynômial,s'il génère toutes les solutions, les unes à la suite des autres, de tellefaçon que le délai avant la première solution, ensuite entre deux solutionsconsécutives, et après la dernière solution, est borné par un polynôme enfonction de la taille de la donnée.Johnson et al [33] ont proposé un algorithme de génération à délaipolynômial de tous les ensembles maximaux indépendants d'un graphe.Creignou et Hébrard [18] ont étudiés la génération à délai polynômial detoutes les solutions de certaines classes du problème SAT généralisé.Pour le problème de la satisfaisabilité d'une formule de logique pro-positionnelle, trouver une solution est déjà di�cile, (exponentiel dans lecas le pire). Les chercheurs se sont donc concentrés sur certaines classesde formules pour lesquelles ils ont proposé des algorithmes polynômiauxpermettant de tester la satisfaisabilité et le plus souvent de retourner unesolution. Nous allons dans cette thèse étudier la plupart de ces classes etvoir celles pour lesquelles la génération à délai polynômial est possible.Dans la partie I, nous allons considérer les principales classes polynô-miales connues et voir comment on peut adapter ces résultats pour lagénération de toutes les solutions à délai polynômial. Dans les parties IIet III, nous étudions plus en détail la classe des formules Horn étendues,et la nouvelle classe des formules ordonnées. Pour ces classes, on prouveque la résolution unitaire su�t à générer e�cacement toutes les solutions.Dans l'exemple que nous avons présenté à la section 1.2, la solution quiest présentée n'est pas satisfaisante, se lever tôt et tout de même rouler6

2. Les résultatsvite, ne semble pas très intelligent. L'utilisateur de notre système peutdonc demander à voir successivement toutes les autres solutions. Nousavons quatre solutions possibles : La première consiste à rouler vite, il n'ya pas de police et se lever tard. La seconde est la même sauf que l'on selève tôt. La troisième consiste à ne pas rouler vite, ne pas se lever tard,et la police e�ectue son contrôle de vitesse. La quatrième est la mêmemais la police n'e�ectue pas de contrôle. La connaissance de toutes lessolutions nous permet donc de choisir la meilleure option. Cela laisse àl'utilisateur le choix, ce qui peut être très important pour un systèmeexpert de ce type.2 Les résultats2.1 Génération à délai polynômialDans la partie I, nous exposons un algorithme très simple pour gé-nérer tous les modèles d'une formule. Ensuite, nous étudions la plupartdes classes polynômiales connues et regardons si on peut utiliser notrealgorithme pour générer toutes les solutions des formules appartenant àces classes. En étudiant les propriétés de la résolution unitaire, on peutprouver que notre algorithme génère toutes les solutions avec un délaiO(nN) (où n est le nombre de variables dans la formule et N la longueurtotale de la formule, c'est à dire la somme des longueurs des clauses) pourles formules Horn, Horn renommables et binaires (dont toutes les clausessont de longueur deux) ainsi que pour les formules équilibrées introduitespar Conforti et Conuéjols [14, 15].Ensuite, nous étudions la classe des formules presque Horn qui estissue des travaux de Hébrard et Luquet sur la base de Horn [32]. Nousprouvons que si on prend la peine de pré-calculer un ordre sur les variablesd'une telle formule (ce qui peut être fait en temps O(nN)), alors on peutgénérer tous ses modèles avec un délai O(nN) avec pour seul outil larésolution unitaire. On peut ensuite utiliser ce résultat pour démontrerla possibilité de générer à délai O(nN) les solutions des formules de laclasse q-Horn.Nous étudions ensuite les classes de formules pour lesquelles la réso-lution unitaire ne su�t pas pour générer toutes les solutions. On utilisedans ce cas les résultats établis pour résoudre le problème de la satisfai-sabilité des formules de ces classes. Nous présentons un algorithme pourgénérer toutes les solutions d'une formule appartenant à l'une des classes�k (k � 0) (présentées par Gallo et Scutella [27] à partir d'une classe dé-crite par Yamasaki et Doshita [48]) avec un délai O(nkN). Le même typede méthode peut être appliqué pour générer à délai polynômial les solu-tions des formules appartenant aux classes faisant partie des hiérarchiesprésentées par Pretolani [40]. 7

Introduction généraleNous prouvons par contre que pour la classe Quad présentée par Dalal[19], ainsi que pour les classes appartenant aux hiérarchies f
g et f�g,présentées par Dalal et Etherington [20], si P6=NP, il est impossible detrouver un algorithme à délai polynômial pour générer toutes les solutionsde ces formules.2.2 Formules Horn étendues (simples)Les parties II et III sont consacrées à l'étude de classes pour lesquellesla résolution unitaire est le seul moteur utilisé pour la génération detoutes les solutions.Dans la partie II, nous étudions les propriétés des formules Horn éten-dues présentées par Chandru et Hooker [12] et ensuite étudiées par Swa-minathan et Wagner [46] ainsi que Schlipf et al. [44]. Nous présentonstout d'abord les formules Horn étendues. Une formule F est dite Hornétendue, s'il existe une arborescence dont les arcs sont étiquetés de ma-nière unique par les variables de F et telle que : pour chaque clause de laformule, les variables apparaissant positivement dans la clause, formentun chemin dans l'arborescence, et les variables apparaissant négative-ment dans cette même clause forment des chemins disjoints commençanttous à la racine de l'arborescence plus un chemin commençant au mêmesommet que le chemin positif. Nous étudions dans cette thèse l'origine decette dé�nition et aussi comment il est possible de générer à délai O(nN)tous les modèles d'une telle formule. Malheureusement, il n'existe pas ac-tuellement d'algorithme polynômial permettant de tester si une formuledonnée appartient ou non à la classe Horn étendue.C'est la raison de la création des formules Horn étendues simples parSwaminathan et Wagner [46]. Ils ont remarqué que si on simpli�e un peula dé�nition donnée par Chandru et Hooker, on peut obtenir une classede formules gardant les mêmes propriétés : on peut tester la satisfaisa-bilité en temps linéaire. Nous montrons que l'on peut générer tous lesmodèles avec un délai O(nN). Ils proposent un algorithme quadratiquepour tester si une formule appartient ou non à leur classe. Nous étu-dions cette classe, et mettons en avant une structure intrinsèque à touteformule. Il s'agit d'une partition de l'ensemble des variables en classesd'équivalences appelées agrégats. Ensuite, nous étudions les agrégats desformules Horn étendues simples et découvrons des relations à l'intérieurde ces agrégats et entre ces agrégats. Cela nous permet de construire unalgorithme linéaire pour la reconnaissance des formules Horn étenduessimples. Cela nous permet aussi de proposer un algorithme linéaire pourla reconnaissance des formules de la classe Horn élargie simple que nousavons créée à la suite d'une remarque de Schlipf et al. [44].8

2. Les résultats2.3 Formules ordonnéesDans la partie III, nous présentons une nouvelle classe de formules,les formules ordonnées. La classe des formules ordonnées étend, d'unefaçon très naturelle, la classe des formules de Horn, et tout comme cellesde Horn, elles possèdent de très nombreuses propriétés intéressantes.On peut tester si une formule est ordonnée en temps O(nN). Soit Fune formule ordonnée, il est possible de déterminer si F est satisfaisableavec un algorithme linéaire basé uniquement sur la résolution unitaire.On peut générer tous les modèles de F avec un délai O(nN).Mais là où cette classe est particulièrement intéressante, c'est que l'onpeut tester en temps O(nN) si une formule F est ordonnée-renommable,c'est à dire, s'il existe un ensemble X de variables tel que si on remplaceles occurrences de x par :x et les occurrences de :x par x pout tout x 2X, on transforme F en une formule ordonnée. Cette propriété n'est pastriviale, puisque par exemple tester si une formule peut être renommée enune formule de la classe �k (pour tout k � 1) est au contraire NP-complet[23].Comme le test de renommage utilise les mêmes techniques que pourles formules de Horn, on peut étendre les résultats obtenus par Hébrardet Luquet [32] sur la base de Horn et développés dans cette thèse avecla dé�nition et l'étude des formules presque Horn (Partie I). On peutainsi dé�nir la classe des formules presque ordonnées. Nous présentons enoutre une méthode pour générer tous les modèles d'une telle formule quiest très similaire à la méthode proposée pour générer les modèles d'uneformule presque Horn présentée dans la Partie I. Sous réserve de disposerd'un ordre sur les variables (qui peut être calculé en tempsO(nN)), notrealgorithme peut générer tous les modèles d'une formule presque ordonnéeen n'utilisant que la résolution unitaire.
9

Introduction générale

10

Première partieLe problème SAT et lagénération à délai polynomial

11

Chapitre 1IntroductionSommaire1.1 Préliminaires 131.2 Dé�nitions 141.3 Algorithme générique 161.4 Sur quelles formules appliquer cet algo-rithme . 171.1 PréliminairesLe problème de satisfaisabilité d'une formule de logique proposition-nelle est un des problèmes centraux de l'informatique théorique. Il s'agitde trouver pour une formule donnée si oui ou non, il existe une solutionpouvant rendre cette formule vraie.Cook [16] a prouvé que tout problème de la classe NP (i.e. dont onpeut tester si une donnée est solution en temps polynômial) pouvait seréduire en une instance du problème de satisfaisabilité. Depuis, de trèsnombreux problèmes ont été prouvés être de complexité équivalente auproblème SAT et ils forment la classe des problèmes NP-complets.L'utilisation de formules de logique propositionnelle est très utile, parexemple en intelligence arti�cielle. Ces formules peuvent être utiliséespour faire de la démonstration automatique. On peut aussi voir les sys-tèmes de déduction à base de règles comme une application du problèmeSAT. La montée en puissance du Data Mining, a bien montré l'intérêtpratique de l'étude de la complexité des algorithmes et la maîtrise decette complexité.Nous allons étudier dans cette partie et dans cette thèse une extensiondu problème de satisfaisabilité d'une formule de logique propositionnelle :� la génération de toutes les solutions qui satisfont une formule ceci à délairaisonnable�. 13

Chapitre 1. IntroductionEn e�et les utilisateurs de systèmes en Intelligence Arti�cielle, ne secontentent pas de savoir qu'une réponse existe, ils veulent la connaître. Sicelle-ci ne leur convient pas, ils veulent en connaître une autre, puis peut-être une troisième. De plus entre deux réponses consécutives, le tempsdoit être borné par un délai polynômial.Johnson et al. [33] ont présenté une notion de complexité qui s'adaptebien à ce type de problèmes. Comme le nombre des solutions peut êtreexponentiel, il est impossible de dé�nir une complexité dépendant uni-quement du temps d'exécution total de l'algorithme. C'est pourquoi ilsont dé�ni la notion de délai polynômial. Le temps avant la première solu-tion, entre deux solutions et pour dire qu'il n'existe pas d'autre solutiondoit être borné par un polynôme en fonction de la taille de la formule.Nous présentons ici un algorithme qui permet de générer à délai po-lynômial toutes les solutions de certaines formules. On prouve ensuiteque cet algorithme fonctionne avec les formules appartenant à presquetoutes les classes pour lesquelles on peut tester la satisfaisabilité en tempspolynômial.1.2 Dé�nitionsOn va dé�nir ici les principaux concepts et notations qui seront utiliséstout au long de cette thèse.Rappelons ici qu'un littéral est soit une variable propositionnelle x(littéral positif), soit sa négation :x (littéral négatif). Une clause est unensemble �ni de littéraux. Si une clause C contient au plus un littéralpositif, C est appelée clause de Horn, et si card(C) = 1, on dit queC est une clause unitaire. Une formule est un ensemble �ni de clauses.Tout au long de cette thèse, F désignera une formule, V = fx1; : : : ; xngson ensemble de variables et N = �C2Fcard(C). Dans la Partie II, nousutiliserons la notation F pour représenter une formule.F est une formulede Horn si toutes ses clauses sont des clauses de Horn.Exemple : Soit F1 = fC1; C2; C3; C4; C5; C6; C7; C8g, avec C1 = f:x1,:x2, x4, x5, :x7g, C2 = f:x1;:x2;:x3g, C3 = f:x1;:x4;:x5g, C4 =fx1, x2, x3, :x5, :x6g, C5 = f:x6; x7g, C6 = fx6g, C7 = fx2; x3g. F1 estune formule et C3 en est la troisième clause.Soit x une variable et l un littéral. Si on a l = x ou l = :x, on notevar(l) = x. Si l = x (resp. l = :x), on écrit l = :x (resp. l = x). SoitL un ensemble de littéraux. On écrit L l'ensemble fl j l 2 Lg. L estcohérent s'il ne contient pas à la fois l et l quelque soit le littéral l, sinonil est incohérent .Soit X � V . Lit(X) représente l'ensemble des littéraux dé�nis surX, i.e. Lit(X) = X [f:x j x 2 Xg. Si C � Lit(X), on dit que Cest une clause sur X. Un ensemble de littéraux L est complet pour X si14

1.2. Dé�nitionsL [L = Lit(X). L est complet pour une formule s'il est complet pour Vsi V désigne l'ensemble des variables de la formule.On dit qu'on renomme x dans F si on remplace toute occurrencede x par :x et toute occurrence de :x par x. Un renommage est unensemble de littéraux qui est complet et cohérent. Soit R un renommageet x 2 V une variable, on a R(x) = x et R(:x) = :x si x 2 R (x n'estpas renommé), on a aussi R(x) = :x et R(:x) = x si :x 2 R (x estrenommé). On remarque que pour tout renommage R, et tout littéral l,R(l) est un littéral positif, si et seulement si l 2 R. Pour toute clause C,R(C) décrit l'ensemble fR(l) j l 2 Cg. De même pour toute formule F ,on aura R(F) = fR(C) j C 2 Fg.Exemple : SoitR = f:x1;:x2;:x3; x4; x5; x6; x7g un renommage.R(F1) =ffx1; x2; x4; x5;:x7g, fx1; x2; x3g, fx1;:x4;:x5g, f:x1;:x2;:x3;:x5;:x6g,f:x6; x7g, fx6g, f:x2;:x3gg.F est dite satisfaisable s'il existe un ensemble de littéraux cohérentL tel que pour toute clause C 2 F , C \ L 6= ;. Soit M un ensemblecohérent et complet.M est un modèle de F si pour toute clause C 2 F ,C \M 6= ;.Exemple : L'ensemble de littéraux M = f:x1; x2; x3; x4; x5; x6; x7g estun modèle de la formule F1.Soit C une clause, on notera pos(C) l'ensemble fx 2 V j x 2 Cg,et neg(C) l'ensemble fx 2 V j :x 2 Cg. Soit x une variable, on noteCNeg(x) l'ensemble fC 2 F j :x 2 Cg (clauses contenant :x), etCPos(x) l'ensemble fC 2 F j x 2 Cg (clauses contenant x). Soit l unlittéral, on écrit OccF (l) l'ensemble fC 2 F j l 2 Cg des clauses de Fcontenant l ; lorsqu'aucune confusion ne peut être faite, on note cet en-sembleOcc(x). On peut remarquer que CPos(x) = Occ(x) et CNeg(x) =Occ(:x). Si C est un ensemble de littéraux, on note var(C) l'ensemblefx 2 V j x 2 C ou:x 2 Cg, pour toute formule G = fC1; : : : ; Ckg onnote var(G) = var(C1) [: : : [var(Ck).Exemple : Pour la formule F1 dé�nie ci-dessus, pos(C1) = fx4; x5g,pos(C2) = ;, neg(C1) = fx1; x2; x7g, CNeg(x1) = fC1; C2; C3g,CPos(x2) = fC4; C7g, Occ(:x3) = fC2g.Soit x une variable et l un littéral, on note Fnx = fCnx;:x j C 2 Fget Fl = fC n flg j C 2 F ; l =2 Cg.Exemple : On a F1 n x1 = f f:x2; x4; x5;:x7g, f:x2;:x3g, f:x4;:x5g,fx2; x3;:x5;:x6g, f:x6; x7g, fx6g, fx2; x3gg, et (F1):x2 = f f:x1;:x4;:x5g,fx1; x3;:x5;:x6g, f:x6; x7g, fx6g, fx3gg.On dit qu'une clause C est dérivable de F par résolution unitaire s'ilexiste une suite de clauses C1; : : : ; Cp avec Cp = C telle que pour touti (1 � i � p) ; ou bien Ci 2 F ou bien il existe j; k < i et un littéral15

Chapitre 1. Introductionl véri�ant Cj = Ci [flg et Ck = flg. Soit � = (C1; : : : ; Cp), � est unedérivation unitaire.Soit Unit(F) l'ensemble des clauses unitaires dérivables de F parrésolution unitaire.On sait que si Unit(F) n'est pas cohérent alors F est non satisfaisable.La réciproque est en général fausse.Soit Noyau(F) l'ensemble des clauses obtenues à partir de F en ôtantles clauses qui contiennent un élément de Unit(F), et en supprimant dansles clauses restantes tous les complémentaires des littéraux de Unit(F).Exemple : En reprenant la formuleF1 de l'exemple ci-dessus, on obtient :Unit(F1) = fx6; x7g etNoyau(F1) = ff:x1;:x2; x4; x5g, f:x1;:x2;:x3g,f:x1;:x4;:x5g, fx1; x2; x3;:x5g, fx2; x3gg.La proposition suivante est le rappel d'un résultat de base [39].Proposition 1 F est satisfaisable si et seulement si Unit(F) est cohé-rent et Noyau(F) est satisfaisable.Preuve : Si F est satisfaisable, alors évidemment Unit(F) est cohérentet Noyau(F) est satisfaisable. Maintenant supposons que Unit(F) est co-hérent et Noyau(F) est satisfaisable. Soit MN un modèle de Noyau(F),l'ensembleMN [Unit(F) est un modèle de F . 2Il est bien connu que l'ensemble Unit(F) et la formule Noyau(F)peuvent être calculés en temps O(N) (voir [20] par exemple).Par abus de notation, on utilisera parfois la notation U dans laquelleU est un ensemble de littéraux pour représenter l'ensemble de clausesunitaires U 0 = fflg j l 2 Ug.1.3 Algorithme génériqueNous présentons ici un algorithme pour la génération à délai polynô-mial des modèles pour les formules de la plupart des classes polynômialesconnues.Proposition 2 Si pour tout ensemble de littéraux U , on peut tester entemps O(f(N)) si F [U est satisfaisable, alors on peut générer les mo-dèles de F à délai O(nf(N)).Preuve : Nous allons utiliser l'algorithme Génération (Fig.1.1) pour gé-nérer tous les modèles de F . Pour tout couple (U ; i) empilé dans P , ilexiste au moins un modèle satisfaisant F [U qui contient U , sinon F [Une serait pas satisfaisable, et donc ne serait pas empilé. Donc, si cet algo-rithme retourne un ensemble de littéraux, on est sûr que cet ensemble estun modèle de F . Comme cet algorithme examine implicitement tous les16

1.4. Sur quelles formules appliquer cet algorithmeAlgorithme GénérationEntrée : Une formule F , satisfaisant le conditions de la proposition 2 ;et une permutation (x1; : : : ; xn) des variables de F ;Sortie : Les modèles de F ;débutPile P ;si F est satisfaisable alors P:empiler (;; 1)tant que P 6= ; faire(U ; i) P:dépiler() ;si i = n+ 1 alors sortir(U)sinonsi F [U [ffxigg est satisfaisable alorsP:empiler(U [ffxigg; i+ 1) ;�n si ;si F [U [ff:xigg est satisfaisable alorsP:empiler(U [ff:xigg; i+ 1) ;�n si ;�n sinon ;�n tant que ;�n. Fig. 1.1 � Algorithme générationensembles de littéraux cohérents et complets pour V , on peut conclureque cet algorithme génère tous les modèles de F .Le délai entre deux modèles consécutifs est polynômial :� lors de chaque exécution de la boucle �tant que�, soit un modèleest généré, soit la valeur de i au sommet de la pile est augmentéede 1, le nombre de boucles entre deux générations est donc bornépar n.� Le coût du test de satisfaisabilité est O(f(N)).La complexité totale de cet algorithme est donc : O(nf(N)). 21.4 Sur quelles formules appliquer cet algo-rithmeL'algorithme que nous avons présenté ici fonctionne avec presquetoutes les classes de formules connues. Nous allons maintenant voir quelssont les mécanismes qui font que si on connaît un algorithme polynômial17

Chapitre 1. Introductionpour tester la satisfaisabilité d'une formule, alors, la plupart du temps,on peut générer toutes les solutions de cette formule avec un délai poly-nômial.Au Chapitre 2 nous allons étudier un ensemble de classes, telles que lesformules de Horn, Horn renommables, binaires ou les formules équilibréesintroduites par Conforti et Conuéjols [14, 15]. Le seul outil utilisé pour lagénération à délai polynômial avec ces formules est la résolution unitaire.Au Chapitre 3, nous montrons que moyennant le pré-calcul d'un ordreparticulier sur les variables, il est possible d'utiliser notre algorithme, enutilisant uniquement la résolution unitaire, pour générer les solutions dedeux classes supplémentaires. La classe des formules q-Horn présentée etétudiée par Boros et al. [6, 8] et une nouvelle classe, les formules presqueHorn, qui est issue des travaux de Hébrard et Luquet [32] sur la notionde base de Horn.Au Chapitre 4 nous présentons un ensemble de classes de formulespour lesquelles la résolution unitaire n'est pas su�sante, mais pour les-quelles on sait utiliser les résultats obtenus sur le test de satisfaisabilitépour générer toutes les solutions à délai polynômial. C'est le cas des for-mules Horn généralisées introduites par Yamasaki et Doshita [48], de lahiérarchie � présentée par Gallo et Scutella [27], ainsi que des hiérarchiesprésentées par Pretolani [40].Au Chapitre 5, nous prouvons que pour certaines classes de formules,par exemples les formules Quad présentées par Dalal [19] ou les hiérar-chies
 et� présentées par Dalal et Etherington [20], si P 6=NP, il n'existepas d'algorithme de génération des solutions à délai polynômial.

18

Chapitre 2Utilisation de la résolutionunitaire seuleSommaire2.1 Introduction 192.2 Formules de Horn 212.3 Formules Horn-renommables 212.4 Formules binaires 222.5 Formules équilibrées 252.6 Conclusion 262.1 IntroductionLa résolution unitaire joue un rôle essentiel dans l'étude du problèmeSAT. Elle est e�cace et permet de simpli�er une formule très rapidement.Nous présentons ici un ensemble de classes de formules pour lesquellesla résolution unitaire su�t à déterminer si (F [U) est satisfaisable (oùF est une formule de la classe concernée et U un ensemble de littérauxvu comme un ensemble de clauses unitaires).La première de ces classes est la classe des formules de Horn. On saitque tester la satisfaisabilité d'une telle formule F revient à étudier sil'ensemble Unit(F) est cohérent. Cela nous permet de proposer un al-gorithme à délai O(nN) pour générer tous les modèles d'une formule deHorn. Nous obtenons les mêmes résultats pour les formules Horn renom-mables puisque les modèles d'une formule Horn renommables sont justeles modèles de la formule de Horn correspondante que l'on a renommés.On remarque en outre que si une formule binaire est satisfaisable alorselle est Horn renommable, donc générer tous les modèles d'une formulebinaire revient à tester sa satisfaisabilité, et dans le cas positif à appliquer19

Chapitre 2. Utilisation de la résolution unitaire seulel'algorithme trouvé pour les formules Horn renommables. Cela peut êtrefait là aussi avec un algorithme à délai O(nN).Une autre classe pour laquelle la résolution unitaire su�t à testerla satisfaisabilité est la classe des formules équilibrées. On utilise cettepropriété, ainsi que la stabilité de la classe par la résolution unitaire,pour prouver que l'on peut générer à délai O(nN) tous les modèles d'uneformule équilibrée.Soit C une classe de formules.P 1 C véri�e P1, si pour toute formule F 2 C, et pour tout ensemble delittéraux U , on a Noyau(F [U) 2 C.On remarque que C véri�e P1 implique que la classe C est stable parla résolution unitaire.P 2 C véri�e P2, lorsque pour toute formule F 2 C, le fait que touteclause de F soit de longueur supérieure ou égale à deux, implique que Fsoit satisfaisable.Proposition 3 Si C véri�e les propriétés P1 et P2, alors on peut tester siF [U est satisfaisable en temps O(N) (où N est la longueur de F [U).Preuve : On peut calculer Noyau(F [U) et Unit(F [U) en tempslinéaire (O(N)). On sait que F [U est satisfaisable si et seulement siUnit(F [U) est cohérent et Noyau(F [U) est satisfaisable (Prop. 1).Le test de la cohérence de Unit(F [U) est immédiat, comme en plus onsait que Noyau(F [U) est élément de C (P1), et qu'elle ne contient quedes clauses dont la longueur est supérieure ou égale à deux, on sait (P2)que Noyau(F [U) est satisfaisable. 2Des Propositions 2 et 3 ont déduit immédiatement :Corollaire 4 Si C véri�e les propriétés P1 et P2, alors pour toute for-mule F 2 C, on peut générer toutes les solutions de F avec un délaiO(nN).Nous allons maintenant étudier plusieurs classes qui véri�ent les deuxpropriétés P1 et P2. Parmi celles-ci, on va trouver les classes polynô-miales les plus connues comme la classe des formules de Horn, les for-mules Horn renommables, les formules binaires, mais aussi la classe desformules équilibrées. On verra dans la Partie II que les classes des for-mules Horn étendues et Horn étendues simples véri�ent cette propriété,on découvrira aussi dans la Partie III de cette thèse la classe des formulesordonnées qui véri�e elle aussi ces deux propriétés.20

2.2. Formules de Horn2.2 Formules de HornLa classe des formules de Horn est la plus connue des classes de for-mules de logique propositionnelle. C'est la classe qui sert de base aulangage Prolog ainsi qu'aux systèmes d'apprentissage à base de règles.Dé�nition 1 (formule de Horn) Une clause C est dite clause de Hornsi elle contient au plus un littéral positif. Une formule est dite de Hornsi toutes ses clauses sont des clauses de Horn.Exemple : La formule F1 = ffx1;:x2;:x3g; f:x4;:x5g; fx3;:x5gg estune formule de Horn, mais la clause fx4; x5g n'est pas une clause de Horn.On peut tester en temps linéaire si une formule est une formule deHorn, il su�t de compter pour chaque clause le nombre de littérauxpositifs.Proposition 5 Si F est une formule de Horn, alors pour tout ensemblede clauses unitaires U , Noyau(F [U) est une formule de Horn.Preuve : Soit C 0 une clause de F 0 = Noyau(F [U), il existe une clauseC 2 F [U telle que C 0 � C (par dé�nition de Noyau). L'ensemble Une contient que des clauses unitaires, donc C 2 F et C est une clause deHorn. La clause C ne contient donc pas plus d'un littéral positif, il en estalors de même pour C 0. 2Proposition 6 Si F est une formule de Horn, dont toutes les clausessont de longueur supérieure ou égale à deux, alors F est satisfaisable.Preuve : Soit M = f:x j x 2 V g. L'ensembleM est un modèle pour F ,car toute clause de F contient au moins un littéral négatif et est doncsatisfaite par M . 2Exemple : La formule F1 présentée ci-dessus admet l'ensemble de litté-raux f:x1;:x2;:x3;:x4;:x5g comme modèle.La classe des formules de Horn véri�e donc les deux propriétés P1 etP2, on peut donc générer tous les modèles de toute formule de Horn àdélai O(nN) (Corollaire 4).2.3 Formules Horn-renommablesLa satisfaisabilité d'une formule n'est pas altérée par un renommagede ses variables. Dans les formules de Horn, littéraux positifs et négatifs21

Chapitre 2. Utilisation de la résolution unitaire seulejouent des rôles dissymétriques, il est donc naturel d'étudier la classe desformules qu'un renommage de certaines de ses variables transforme enune formule de Horn.Dé�nition 2 (formule Horn-renommable) Une formule est dite Horn-renommable si on peut la transformer en une formule de Horn en renom-mant certaines de ses variables.Exemple : La formuleF2 = ffx1;:x2; x3g; f:x4; x5g; f:x3; x5gg est Horn-renommable. Si on renomme les variables x3 et x5, on obtient la formulede Horn F1 présentée dans l'exemple précédent.Plusieurs algorithmes permettant de tester si une formule est Horn-renommable ont été proposés [1, 11, 31]. La complexité des meilleursalgorithmes est linéaire en la longueur de la formule (O(N)).Proposition 7 Si F est Horn-renommable, alors pour tout ensemble delittéraux U , la formule Noyau(F [U) est Horn-renommable.Preuve : On rappelle qu'un renommage est un ensemble de littéraux quiest cohérent et complet (cf. dé�nitions Sec. 1.2).Comme F est Horn-renommable, il existe un renommage R tel queR(F) est Horn. Soit U 0 = R(U), on a doncNoyau(R(F)[U 0) = Noyau(R(F [U))est Horn (Prop. 5). D'où Noyau(F [U) est Horn-renommable. 2Proposition 8 Si F est Horn-renommable et que toutes ses clauses sontde longueur supérieure ou égale à deux, alors F est satisfaisable.Preuve : Évident car le renommage des variables ne change pas la satis-faisabilité d'une formule. 2Exemple : La formule F2 dé�nie ci-dessus est satisfaite par le modèlede F1 dans lequel on a renommé les variables x3 et x5, ce qui donne lemodèle f:x1;:x2; x3;:x4; x5g.La classe des formules Horn-renommables véri�e donc les deux pro-priétés P1 et P2, on peut donc comme pour les formules de Horn générertous les modèles à délai O(nN) (Corollaire 4).2.4 Formules binairesNous étudions ici l'autre grande classe de formules de logique proposi-tionnelle. Les formules binaires sont intéressantes, car on peut tester leur22

2.4. Formules binairessatisfaisabilité en temps linéaire, et il est trivial de tester si une formuleappartient à la classe.Dé�nition 3 (formule binaire) Une formule est dite binaire si toutesses clauses sont de longueur inférieure ou égale à deux.Exemple : Soit F3 = ffx1; x2g; fx1;:x3g; f:x2; x3g; f:x2;:x3gg. Laformule F3 est binaire, car toutes ses clauses ont une longueur � 2.La reconnaissance des formules binaires est trivialement linéaire, ilsu�t de compter pour chaque clause de F le nombre de littéraux.De plus, Even et al. [24] ont donné un algorithme e�cace pour testerla satisfaisabilité d'une formule binaire.Proposition 9 On peut tester en temps linéaire si une formule F donttoutes les clauses sont de longueur deux est satisfaisable.Preuve : On peut voir toute clause de deux littéraux fl1; l2g comme unedouble implication, l1 ! l2 et l2 ! l1. On peut construire le grapheG dont les sommets sont les littéraux de la formule et dont les arcscorrespondent aux implications données ci-dessus.Nous allons maintenant prouver que F est satisfaisable si et seulementsi il n'existe pas de couple de littéraux complémentaires appartenant àla même composante fortement connexe. Pour tout modèle, si un littéralappartient à M , alors il en sera de même pour tous les littéraux de lamême composante fortement connexe. Donc, si deux littéraux complé-mentaires apparaissent dans la même composante fortement connexe, laformule F est forcément insatisfaisable.A l'inverse, supposons qu'il n'existe pas de couple de littéraux complé-mentaires apparaissant dans une même composante fortement connexede G. Considérons le graphe quotient G0 obtenu en rassemblant en unnoeud chaque composante fortement connexe de G. Ce graphe est forcé-ment acyclique (par dé�nition des composantes fortement connexes), ildé�nit donc un ordre partiel sur ses éléments. On peut étendre cet ordreen un ordre total. Pour chaque variable x, si la composante fortementconnexe de x apparaît avant celle de :x, on ajoute :x dans M , sinonc'est x qui est ajouté à M . On peut prouver que ce modèle satisfait laformule.Comme il est possible de calculer en temps linéaire les composantesfortement connexes de G en utilisant l'algorithme de Tarjan [47], commeen plus l'algorithmede Tarjan calcule les composantes fortement connexesdans l'ordre topologique inverse, nous obtenons donc un algorithme li-néaire pour calculer la satisfaisabilité des formules binaires. 2Exemple : Le graphe G (Fig. 2.1) est le graphe d'implication associéà la formule F3. Dans ce graphe, la composante connexe de chaque23

Chapitre 2. Utilisation de la résolution unitaire seulenoeud est ce noeud lui même. On peut donc obtenir l'ordre total sui-vant : (:x1; x2;:x3; x3;:x2; x1). On obtient pour cet ordre le modèlefx1;:x2; x3g. On peut véri�er que ce modèle satisfait F3.���	?ZZ~ ��=--SSw ?:x1x2 :x3x3 :x2x1 GFig. 2.1 � Graphe d'implication de F3Proposition 10 Une formule binaire dont toutes les clauses sont de lon-gueur deux est satisfaisable si et seulement si elle est Horn-renommable.Preuve : ()) La formule F est satisfaisable et binaire. Soit M le mo-dèle de F . M est cohérent et complet, donc M = fl j l 2 Mg est unrenommage. M(l) est positif si et seulement si l 2 M , donc ssi l 62 M .Comme pour chaque clause C 2 F , C \M 6= ;, c'est à dire j C\M j� 1,d'où j C \M j� 1, ce qui signi�e que M(C) contient au plus un littéralpositif. F est donc Horn-renommable.(() Supposons F Horn-renommable. Il existe donc un renommageRtel que R(F) est une formule de Horn. Donc pour toute clause C 2 F ,on a R(C) contient au plus un littéral positif donc j R \ C j� 1. SoitM = fl j l 2 Rg. On a que jM\C j� 1 doncM est un modèle pour F . 2Exemple : La formuleF3 est Horn-renommable. Si on renomme x1 et x3,on obtient la formule F4 = f f:x1; x2g, f:x1; x3g, f:x2;:x3g, f:x2; x3gg qui est une formule de Horn.Proposition 11 Si F est une formule binaire, alors on peut générertous ses modèles à délai O(nN).Preuve : Il su�t d'appliquer le test de satisfaisabilité (Prop. 9) sur F .Si celui-ci est négatif, alors on peut dire en temps linéaire que F n'admetaucun modèle. Si ce test est positif, alors la Proposition 10 implique queF est Horn-renommable, on applique donc l'algorithme Génération. Lecorollaire 4 ainsi que les résultats de la section 2.3 impliquent le résultat.224

2.5. Formules équilibrées2.5 Formules équilibréesConforti et Cornuéjols [14] ont présenté une classe de formules pourlaquelle le test de satisfaisabilité se fait à l'aide uniquement de la réso-lution unitaire. Nous allons ici prouver que l'on peut générer toutes lessolutions de telles formules à délai O(nN).Dé�nition 4 (formule équilibrée) Considérons la formule F = fC1; : : : ; Cmgsur un ensemble V = fx1; : : : ; xng. Associons à F la (0;�1)-matrice Msuivante. Les lignes de M sont indexées par les clauses de F et les co-lonnes sont indexées par les variables de telle façon que Mij soit un +1si xj 2 Ci, un �1 si :xj 2 Ci et un 0 sinon. La formule F est équilibréesi pour chaque sous-matrice carrée de M ayant exactement deux entréesnon nulles par ligne et par colonne, la somme des entrées est un multiplede quatre.Exemple : Soit F5 = ff:x1; x2g; f:x1; x2; x3g; fx2; x3gg. On va voir icique F5 est équilibrée. La matrice associée à la formule F5 est :0@ x1 x2 x3C1 �1 1 0C2 �1 1 1C3 0 1 1 1A (2.1)et ses seules sous-matrices carrées ayant exactement deux entrées nonnulles par ligne et par colonne sont :� x1 x2C1 �1 1C2 �1 1 � (2.2)�x2 x3C2 1 1C3 1 1 � (2.3)La sous-matrice 2.2 correspondant aux variables x1; x2 et aux clausesC1; C2 a une somme égale à zéro (= 0 � 4). La sous-matrice 2.3 corres-pondant aux variables x2; x3 et aux clauses C2; C3 est telle que la sommede ses entrées est égale à quatre. F5 est donc une formule équilibrée.On peut tester en temps polynômial si une formule est équilibrée.En e�et Conforti et al. [15] ont proposé un algorithme polynomial pourreconnaitre si une matrice 0;�1 est équilibrée. Comme la constructionde la matrice se fait en temps O(n2) et son remplissage en O(N), il estdonc possible de tester e�cacement si une formule est équilibrée.Proposition 12 Soit U un ensemble �ni de clauses unitaires, si F estéquilibrée, alors Noyau(F [U) est équilibrée. 25

Chapitre 2. Utilisation de la résolution unitaire seulePreuve : SoitM 0 la matrice correspondant à la formule F 0 = Noyau(F[U). La formule F 0 est égale à F sauf que l'on a e�acé des clauses et cer-tains littéraux.M 0 est donc une sous-matrice deM (on a e�acé des ligneset des colonnes à M pour construireM 0). Donc toute sous-matrice carréede M 0 est sous-matrice carrée de M ce qui implique que la propriété estvéri�ée pour F 0, donc F 0 est équilibrée. 2Proposition 13 Soit F un formule équilibrée, si F ne contient pas declause unitaire, alors F est satisfaisable.Preuve : Conforti et Cornuéjuols [14] ont prouvé que pour toute formuleéquilibrée F , si toute clause de F contient au moins deux littéraux, alorspour toute variable xj, il existe au moins deux modèles satisfaisant F ,un contenant xj et un autre contenant :xj. ([14] Page 673 remark 3.3)2Exemple : M = f:x1; x2; x3g est un modèle de F5.La classe des formules équilibrées véri�e donc les deux propriétés P1et P2, on peut donc générer tous les modèles de toute formule équilibréeà délai O(nN) (Corollaire 4).2.6 ConclusionDans les parties II et III de cette thèse nous allons nous intéresserà des classes de formules qui véri�ent les propriétés P1 et P2. C'est àdire des formules pour lesquelles on a un algorithme à délai O(nN) pourgénérer toutes les solutions. Le lecteur peut passer les chapitres suivantset poursuivre sa lecture directement avec les parties II et III.Chandru et Hooker [12] ont présenté la classe des formules Horn éten-dues. Nous étudions cette classe dans la partie II. Dans le premier cha-pitre de cette partie, nous étudions la dé�nition et l'origine de cette classede formules. C'est aussi l'occasion de véri�er que l'on peut générer tous lesmodèles de telles formules e�cacement. Malheureusement il n'existe pasencore d'algorithme polynômial permettant de tester si une formule estHorn étendue. C'est la raison pour laquelle, Swaminathan et Wagner [46]ont présenté la classe des formules Horn étendues simples. Cette classeest une restriction de la classe des formules Horn étendues, qui véri�eelle aussi les propriétés P1 et P2, mais pour laquelle ils ont présenté unalgorithme de reconnaissance quadratique. Nous présentons même danscette thèse (partie II) un algorithme de reconnaissance linéaire.Dans la partie III nous présentons une nouvelle classe, les formulesordonnées. Cette classe véri�e à la fois P1 et P2, donc on peut générerses modèles avec un délai O(nN).26

Chapitre 3Générer en utilisant un ordresur les variablesSommaire3.1 Introduction 273.2 Formules presque Horn 283.3 Formules q-Horn 353.1 IntroductionOn a vu au Chap. 2 qu'il était possible de générer toutes les solutionsdes formules de certaines classes en utilisant uniquement la résolutionunitaire. Pour que cela soit possible, il faut que la classe véri�e les pro-priétés P1 et P2. P1 signi�e que si F appartient à la classe, alors pourtout ensemble de clauses unitaires U , Noyau(F [U) appartient aussi àla classe. P2 signi�e que si F appartient à la classe et ne contient pas declause unitaire, alors F est satisfaisable.Nous allons étudier une nouvelle extension de Horn dans ce chapitre.Il s'agit de la classe presque Horn, qui est issue des travaux de Hébrardet Luquet [32] sur la base de Horn. Ils ont remarqué que même si uneformule n'était pas Horn renommable, il était possible de renommer par-tiellement cette formule ce qui permet de simpli�er la formule et doncde résoudre plus facilement le problème de satisfaisabilité. En itérant ceprincipe, on peut trouver une classe de formules (que nous avons appeléepresque Horn) pour laquelle on détermine la satisfaisabilité des formulesen temps linéaire. Malheureusement, la classe presque Horn ne véri�epas la propriété P1, c'est à dire qu'il existe des formules presque Hornet des ensembles U tels que Noyau(F [U) n'est pas presque Horn. Maisdans l'algorithme de génération (Fig. 1.1) les ensembles U ne sont pasquelconques, ils sont construits en utilisant un ordre arbitraire donné sur27

Chapitre 3. Générer en utilisant un ordre sur les variablesles variables. On va prouver ici que pour toute formule F , sous réservedu calcul d'un ordre acceptable sur les variables, pour tout ensemble Uutilisé dans l'algorithme, si F est presque Horn alors Noyau(F [U) estaussi presque Horn. Ceci nous permet donc de générer à délai O(nN) (oùN représente la taille totale de la formule et n le nombre de ses variables)tous les modèles de toute formule presque Horn.Nous étudions ensuite la classe q-Horn qui a été introduite par Boroset al. [6]. Cette classe généralise à la fois les formules binaires et lesformules de Horn. On remarque que toute formule q-Horn satisfaisableest aussi presque Horn. Comme il existe un algorithme linéaire pour testerla satisfaisabilité d'une formule q-Horn, nous présentons un algorithmeà délai O(nN) permettant de générer tous les modèles d'une formuleq-Horn.3.2 Formules presque HornSi une formule n'est pas Horn renommable, elle peut être partielle-ment renommable. Hébrard et Luquet [32] ont étudié le phénomène desformules partiellement renommables, ils en ont extrait le concept de basede Horn. Nous utilisons ici ce concept pour introduire une nouvelle classede formules, les formules presque Horn. Nous présentons un algorithmelinéaire permettant de tester la satisfaisabilité d'une telle formule. Danscette section, nous allons rappeler les principaux résultats de Hébrardet Luquet et nous allons montrer que l'on peut, moyennant l'introduc-tion d'un ordre sur les variables, calculer tous les modèles d'une formuleappartenant à cette classe avec un délai O(nN).Dé�nition 5 (formule X-Horn) Soit X � V . F est X-Horn si touteclause de F qui contient un littéral positif de Lit(X) est une clause deHorn sur X (i.e. ne contient que des littéraux de Lit(X) et contient aumaximum un littéral positif).Exemple : Soit F1 = f fx5; x6g, fx5; x6;:x7g, fx3;:x4g, f:x3; x4g,fx1; x2;:x3g, f:x1;:x2; x6g, f:x1; x2g, fx1;:x2gg. F1 est fx3; x4g-Horn,en e�et les clauses qui contiennent des littéraux positifs sur x3 et x4, sontdes clauses de Horn sur les variables x3 et x4.On remarque que les clauses d'une formule X-Horn peuvent être detrois types :� clauses de Horn sur X ;� clauses sur V contenant des littéraux négatifs de Lit(X) avec des litté-raux de Lit(V nX), mais ne contenant aucun littéral positif de Lit(X) ;� clauses sur V nX.28

3.2. Formules presque HornDé�nition 6 (formule X-Horn-renommable, Reste(F ;X)) Soit X �V . F est X-Horn-renommable si on peut transformer F en une for-mule X-Horn en renommant des variables de X. On utilise la notationReste(F ;X) pour l'ensemble fC 2 F j C \ Lit(X) = ;g.Exemple : La formuleF1 est fx5; x6; x7g-Horn-renommable (on renommela variable x6).Hébrard et Luquet [32] ont étudié la notion deX-Horn-renommabilité,ils ont prouvé les deux propositions suivantes et ont découvert la notionde base de Horn. Ils ont remaqué que la X-Horn-renommabilité d'uneformule permettait, pour l'étude du problème de satisfaisabilité, de seramener à l'étude d'une formule plus simple.Proposition 14 Si F est X-Horn-renommable et ne contient pas declause unitaire, alors F est satisfaisable ssi Reste(F ;X) est satisfaisable.Preuve : ()) Immédiat, car Reste(F ;X) � F .(() Cas particulier : F est X-Horn. Soit M un modèle (sur V n X)de Reste(F ;X) et I = f:p j p 2 Xg. Alors I [M est un modèle de F .En e�et, pour tout C 2 F , soit on a C 2 Reste(F ;X) et C \M 6= ;,ou alors C \ I 6= ; (car F est X-Horn et card(C) � 2). Cas général : Fest X-Horn-renommable. Se déduit du cas précédent car le renommagepréserve la satisfaisabilité. 2Proposition 15 Soient X1 � V et X2 � V . Si F est X1-Horn-renommableet X2-Horn-renommable, alors F est (X1 [X2)-Horn-renommable.Preuve : On peut trouver une preuve de cette proposition dans [32], unedémonstration du même type de résultat est en outre présentée en Par-tie III Chap. 2 Prop. 83. 2La proposition précédente, implique que pour toute formule F , ilexiste un ensemble canoniqueB (B � V) tel queF estB-Horn-renommableet tel que pour tout X, si F est X-Horn-renommable, alors X � B.Dé�nition 7 (base de Horn, Reste(F)) Soient X1; : : : ;Xk tous lessous-ensembles de V tels que F est Xi-Horn-renommable et B = X1 [: : : [Xk. La Proposition 15 implique que F est B-Horn-renommable.L'ensemble B sera appelé la base de Horn de F et noté Base(F). Ondé�nit en outre l'ensemble, Reste(F) = Reste(F ; Base(F)).Exemple :On a vu queF1 est fx3; x4g-Horn (donc fx3; x4g-Horn-renommable)et fx5; x6; x7g-Horn-renommable, F1 est donc fx3; x4; x5; x6; x7g-Horn-renommable. On peut prouver que Base(F1) = fx3; x4; x5; x6; x7g. On29

Chapitre 3. Générer en utilisant un ordre sur les variablespeut donc calculer Reste(F1) = f f:x1; x2g, fx1;:x2g g.Corollaire 16 Si F ne contient pas de clause unitaire, alors F est sa-tisfaisable si et seulement si Reste(F) est satisfaisable.On remarque donc que si Reste(F) = ; et que F ne contient pas declause unitaire, alors la formule F est satisfaisable. On va se servir de cerésultat pour dé�nir une nouvelle classe de formules, les formules presqueHorn.Si Base(Reste(F)) est non vide, alors Reste(Reste(F)) est un sousensemble strict de Reste(F). On peut répéter ce processus tant que l'onobtient des formules dont la base de Horn est non vide.Dé�nition 8 (formule presque Horn) Soit Reste-itéré(F) le sous-ensemblede F dé�ni récursivement par : si Base(F) = ; alors Reste-itéré(F) = Fsinon Reste-itéré(F) = Reste-itéré(Reste(F)).Une formule F est presque Horn, si Reste-itéré(F) = ;.Exemple : F1 est presque Horn, car Reste(F1) est une formule de Horn,donc Reste(Reste(F1)) = ;.Corollaire 17 Soit F une formule presque Horn, si F ne contient pasde clause unitaire, alors F est satisfaisable.Malheureusement, la propriété P1 n'est pas véri�ée pour la classepresque Horn.Exemple : Soit U = ffx3g; f:x6gg, Unit(F1 [U) = fx3; x4; x5;:x6get donc Noyau(F1 [U) = ffx1; x2g, fx1;:x2g, f:x1; x2g, f:x1;:x2gg.Quel que soit l'ensemble X � fx1; x2g, cette formule n'est pas X-Horn-renommable, donc Base(Noyau(F1 [U)) = ;, et donc Noyau(F1 [U)n'est pas une formule presque Horn.Nous présentons maintenant une adaptation de l'algorithme de géné-ration pour qu'il puisse donner tous les modèles de toute formule presqueHorn.Nous e�ectuons le pré-calcul d'un ordre sur les variables qui nous per-met ensuite d'appliquer l'algorithme de génération sans risque de tomberdans le problème soulevé par l'exemple ci-dessus.Nous présentons des résultats intermédiaires qui permettent de mieuxapréhender la notion de formule presque Horn. Tout d'abord, on re-marque que si une formule est incluse dans une autre, alors son Resteest inclus dans le Reste de l'autre formule.Proposition 18 Si F 0 � F alors Reste(F 0) � Reste(F).30

3.2. Formules presque HornPreuve :On va faire une preuve par l'absurde. Supposons queReste(F 0) 6�Reste(F). Alors il existe une clause C telle que C 2 Reste(F 0) etC 62 Reste(F). Mais comme Reste(F 0) � F 0 (par dé�nition du Reste),on a C 2 F 0, donc C 2 F (car F 0 � F). Comme C 62 Reste(F), ona C \ Lit(Base(F)) 6= ;. Soit Y = Base(F) \ var(F 0) (on a Y 6= ;car C 2 F 0 et C \ Lit(Base(F)) 6= ;). Par dé�nition de la X-Horn-renommabilité, pour toute clause C 2 F , pos(C) \ Base(F) 6= ; im-plique que var(C) � Base(F). Or F 0 � F , donc pour toute clauseC 2 F 0, pos(C)\Base(F) 6= ; implique que var(C) � Base(F). CommeY = Base(F) \ var(F 0), pour toute clause C 2 F 0, pos(C) \ Y 6= ;implique que var(C) � Base(F). Mais pour toute clause C 2 F 0,var(C) � var(F 0), donc var(C) � Base(F) est équivalent à var(C) �Y . Donc pour toute clause C 2 F 0, pos(C) \ Y 6= ; implique quevar(C) � Y . Donc F 0 est Y -Horn-renommable. Donc Y � Base(F 0) (pardé�nition de la base de Horn). De plus var(Reste(F 0)) \ Base(F 0) = ;(par dé�nition du Reste). D'où var(Reste(F 0)) \ Y = ; et �nalementvar(Reste(F 0)) \ Base(F) = ;. Contradiction. 2Proposition 19 Si F 0 � F et F est presque Horn, alors F 0 est presqueHorn.Preuve : Si Reste-itéré(F) = ;, alors la Prop. 18 implique que Reste-itéré(F 0) = ;. 2Nous présentons une dé�nition alternative pour les formules presqueHorn, cette dé�nition n'utilise pas le concept de base de Horn, mais secontente de la notion plus faible de X-Horn-renommabilité.Proposition 20 F est presque Horn ssi il existe X1; : : : ;Xk, Xi � V(1 � i � k), et F1; : : : ;Fk, Fi � F (1 � i � k), tels que F1 = F , Fi estXi-Horn-renommable (1 � i � k), Fi+1 = Reste(Fi;Xi) (1 � i � k � 1)et Fk = ;.Preuve : ()) Immédiat, il su�t de prendre Xi = Base(Fi) pour tout i,avec F1 = F et Fi+1 = Reste(Fi).(() On raisonne par récurrence sur k.k = 1 On a F = ;, Reste(F) = ; et F est presque Horn.k > 1 Par hypothèse de récurrence, F2 est presque Horn. Par dé�nitionde la base de Horn, Reste(F1) � F2. Donc Reste(F1) est presque Horn(Prop. 19), Reste-itéré(F1) = ; et F1 est presque Horn. 2Remarque 1 Soit F 0 une formule obtenue en renommant des variablesdans F . F est presque Horn ssi F 0 est presque Horn. 31

Chapitre 3. Générer en utilisant un ordre sur les variablesOn a vu que même si F est presque Horn, il existe des ensembles declauses unitaires U tels que Noyau(F [U) n'est pas presque Horn. Nousprésentons ici une caractérisation d'ensembles U tels que Noyau(F [U)soit toujours presque Horn.Dé�nition 9 (permutation convenable, ensemble convenable) Supposonsque F est presque Horn. Il existe X1; : : : ;Xk, Xi � V (1 � i � k), etF1; : : : ;Fk, Fi � F (1 � i � k), tels que F1 = F , Xi = Base(Fi)(1 � i � k), Fi+1 = Reste(Fi;Xi) (1 � i � k � 1) et Fk = ;. SoitW = V n (X1 [: : : [Xk). Une permutation (x1; : : : ; xn) des variables deF est dite convenable si pour tout j (1 � j � n), fx1; : : : ; xjg � W ouil existe i tel que fx1; : : : ; xjg = W [Xk [Xk�1 [: : : [Xi+1 [X avecX � Xi. Un ensemble U de clauses unitaires est dit convenable s'il existeun permutation convenable (x1; : : : ; xn) et un entier i 2 f1; : : : ; ng, telsque var(U) = fxj j 1 � j � ig.Exemple : Pour la formule F1 qui nous sert d'exemple, on a W = ;,X1 = fx3; x4; x5; x6; x7g etX2 = fx1; x2g. L'ensemble U = ffx3g; f:x6ggn'est pas un ensemble convenable, car pour toute permutation �, si x3et x6 sont les deux premiers éléments de �, alors � n'est pas convenable,car on a fx3; x6g � X1, donc ne véri�e pas la dé�nition d'une permu-tation convenable. On a remarqué à l'exemple précédent, que dans ce cas,Noyau(F1[U) n'est pas presque Horn. L'ensembleV = ffx1g; fx2g; f:x3ggest un ensemble convenable, car var(V) = X2 [X avec X � X1. Onremarque qu'un ensemble est convenable, si lorsqu'il contient un élé-ment de Lit(Base(F1)), alors il contient un littéral correspondant àchaque variable n'appartenant pas à la base de Horn. On remarque queNoyau(F1[V) = f fx5; x6g, fx5; x6;:x7g, fx6g g est une formule presqueHorn (elle est même Horn renommable).Proposition 21 Si F est une formule presque Horn, et ne contient pasde clause unitaire, alors pour tout ensemble convenable de littéraux U ,Noyau(F [U) est presque Horn.Preuve : Nous allons prouver que Noyau(F [U) est presque Horn. Laproposition 20 implique qu'il existe X1; : : : ;Xk, Xi � V (1 � i � k),et F1; : : : ;Fk, Fi � F (1 � i � k), tels que F1 = F , Xi = Base(Fi)(1 � i � k), Fi+1 = Reste(Fi;Xi) (1 � i � k � 1) et Fk = ;. Pour touti (1 � i � k), Fi est Xi-Horn-renommable. Sans perte de généralité, onpeut supposer que Fi est Xi-Horn (1 � i � k) (cf Remarque 1). Soit Gi(1 � i � k) la formule obtenue, a partir de Fi en supprimant toutes lesclauses C 2 F telles que C \ Unit(F [U) 6= ;, et en ôtant des clausesrestantes tout littéral t tel que t 2 Unit(F [U). Soit Yi = Xi \ var(Gi)(1 � i � k). On obtient donc G1 = Noyau(F [U), Gi � G1 (1 � i � k)32

3.2. Formules presque Hornet Gk = ;. Il su�t de prouver que Gi est Yi-Horn (1 � i � k) et queGi+1 = Reste(Gi; Yi) (1 � i � k � 1) (Prop. 20).On prouve dans un premier temps que Gi est Yi-Horn (1 � i � k).Soit C 0 2 Gi. La dé�nition de Gi nous donne qu'il existe C 2 Fi tel queC 0 � C, C \Unit(F [U) = ;, et pour tout t 2 C nC 0, t 2 Unit(F [U).Soit l 2 C 0. Si l 2 Lit(Yi) et l est un littéral positif,alors par dé�nition deYi, l 2 Lit(Xi), et C � Lit(Xi) puisque Fi est Xi-Horn ; par conséquentC 0 � Lit(Yi). Par dé�nition des formules Xi-Horn, on sait que C necontient qu'un seul littéral positif. Puisque C 0 � C, on peut conclure queC 0 est une clause de Horn sur Yi. Donc Gi est une formule Yi-Horn.On prouve maintenant que Gi+1 = Reste(Gi; Yi) (1 � i � k � 1).(�) On a Fi+1 = Reste(Fi;Xi). Donc Fi+1 � Fi et Gi+1 � Gi. SoitC 0 2 Gi+1. Il existe C 2 Fi+1 tel que C 0 � C. On a C 2 Reste(Fi;Xi),d'où C \ Lit(Xi) = ;, C 0 \ Lit(Yi) = ; et C 0 2 Reste(Gi; Yi). (�) SoitC 0 2 Reste(Gi; Yi). Il existe C 2 Fi tel que C 0 � C, C\Unit(F [U) = ;,et pour tout t 2 CnC 0, t 2 Unit(F [U). Soit l 2 C 0. On a var(l) 62 Yi, l 2C et var(l) 62 Xi. Donc var(l) 62 Xj (1 � j � i). De plus var(l) 62 var(U)puisque l 62 Unit(F [U) et l 62 Unit(F [U). Donc var(U) \ Xj = ;(1 � j � i) (permet d'utiliser le lemme 22). Or U est convenable. Sup-posons que C 62 Reste(Fi;Xi). Alors il existe :x 2 C tel que x 2 Xi.On a :x 62 C 0, d'où x 2 Unit(F [U). Impossible (Lemme 22). D'où ondéduit que C 2 Reste(Fi;Xi), C 2 Fi+1 et C 0 2 Gi+1. 2Lemme 22 Supposons que F ne contienne pas de clause unitaire, etqu'il existe X1; : : : ;Xk, Xi � V (1 � i � k), et F1; : : : ;Fk, Fi � F(1 � i � k), tels que F1 = F , Fi est Xi-Horn (1 � i � k), Fi+1 =Reste(Fi;Xi) (1 � i � k � 1) et Fk = ;. Soit U un ensemble �ni declauses unitaires tel que Unit(F [U) est cohérent, et i0 2 f1; : : : ; kg telque pour tout j (1 � j � i0) var(U)\Xj = ;. Alors Xi0\Unit(F [U) =;.Preuve : On va prouver par récurrence sur p que pour toute dérivationunitaire � de longueur p de F [U , � ne contient pas de clause unitairepositive fxg telle que x 2 Xi0 \ Unit(F [U).p = 1 Les dérivations de longueur 1 ne contiennent que des clauses deF [U , l'hypothèse de récurence est donc véri�ée pour p = 1.p > 1 Supposons qu'il existe x un littéral positif et � une dériva-tion de longueur p, � = (C1; : : : ; Cp) tels que Cp = fxg et x 2 Xi0 . �contient une clause C = fx; l1; : : : ; lhg (avec h � 1) et les clauses uni-taires fl1g; : : : ; flhg. On va prouver que C ne contient pas de littérauxnégatifs. Soit :z 2 C tel que z 2 Xj et j est minimal. On a j � i0puisque x 2 Xi0 et � contient une clause unitaire positive Ci = fzg aveci < p, ce qui est impossible par hypothèse de récurrence. C ne contientdonc que des littéraux positifs. C 2 Fi0 donc C est Horn sur Xi0 , ce quiest impossible puisque h � 1. 33

Chapitre 3. Générer en utilisant un ordre sur les variablesLa propriété est donc vraie pour tout p. 2Proposition 23 Si F est presque Horn et ne contient pas de clauseunitaire alors pour tout ensemble convenable de littéraux U , F [U estsatisfaisable si et seulement si Unit(F [U) est cohérent.Preuve : (=)) Si F [U est satisfaisable, alors Unit(F [U) est cohérent(Rem. 1).((=)Noyau(F[U) est presque Horn (Prop.21), donc satisfaisable (Coro.17),Unit(F [U) est cohérent (par hypothèse). La remarque 1 implique queF [U est satisfaisable. 2Proposition 24 On peut tester si une formule F est presque Horn et,si c'est le cas, construire une permutation convenable en temps O(nN).Preuve : Hébrard and Luquet[32] ont présenté un algorithme pour lecalcul de la base de Horn d'une formule. Ils ont montré qu'on pouvaitcalculer la base de Horn d'une formule en temps linéaire. On peut ob-server que si Base(F) est connue, alors il est facile de calculer Reste(F)en temps O(N). On obtient donc Reste(F) en temps O(N). Si Base(F)n'est pas vide, alors l'ensemble des variables de Reste(F) est strictementinclus dans V . En conséquence, le calcul du Reste-itéré(F) requière aumaximum n étapes et est donc exécuté en temps O(nN). On obtient,comme sous-produit de ce calcul, les ensemblesX1; : : : ;Xk et les formulesF1; : : : ;Fk tels que Fi+1 = Reste(Fi;Xi) (1 � i � k�1) et Fk = ;. Il estfacile de construire en temps O(n) une permutation convenable à partirdes ensembles X1; : : : ;Xk et de V n (X1 [: : : [Xk). 2Proposition 25 On peut générer à délai O(nN) les modèles de touteformule presque Horn.Preuve : L'algorithme Génération (Fig. 1.1) peut être appelé avec n'im-porte quelle permutation. Si on utilise une permutation convenable, àchaque pas de l'algorithme F [U [ffligg est satisfaisable ssi Unit(F [U [ffligg) est cohérent (où li est xi ou :xi) (Prop. 23). On peut en outretester en temps O(N) si Unit(F [U [ffligg) est cohérent. Le reste de lapreuve est similaire à celle de la Prop. 2. L'algorithme Génération donnedonc tous les modèles d'une formule presque Horn avec un délai O(nN).234

3.3. Formules q-Horn3.3 Formules q-HornLa classe des formules q-Horn a été présentée par Boros et al. [6].Cette classe est à la fois une généralisation des formules de Horn et desformules binaires. Boros et al. ont présenté un algorithme linéaire pourrésoudre le problème de la satisfaisabilité d'une formule q-Horn. Boroset al. [8] ont par ailleurs proposé un algorithme linéaire assez compliquépour tester si une formule est q-Horn. Toutefois, Hébrard et Luquet [32]ont remarqué le lien entre une formule q-Horn et la notion de base deHorn présentée à la Section 3.2.Boros et al. [6] donnent une dé�nition fonctionnelle pour les formulesq-Horn, nous utiliserons de préférence ici la caractérisation syntaxiquemise en évidence dans ce même papier.Dé�nition 10 (q-Horn) F est q-Horn si V (son ensemble de variables)peut être découpé en deux ensembles X et Y tels que les clauses de Fappartiennent à un des deux types suivants :� clauses contenant au plus un littéral positif sur X et pas de littéralsur Y .� clauses ne contenant aucun littéral positif sur X, et au plus deuxlittéraux (positifs ou négatifs) sur Y .Pour se rapprocher de notre caractérisation des formules X-Horn, onpeut aussi l'écrire de la façon suivante. Chaque clause de F appartient àl'un de ces trois ensembles :� clauses contenant au plus un littéral positif sur X et pas de littéralsur Y .� clauses ne contenant aucun littéral positif sur X, mais au moins unlittéral négatif surX, et au plus deux littéraux (positifs ou négatifs)sur Y .� clauses contenant au maximumdeux littéraux (positifs ou négatifs)sur Y , et aucun littéral sur X.On peut donc remarquer que si F est q-Horn, alors F est X-Horn.Cela nous conduit donc à une caractérisation des formules q-Horn pré-sentée dans [32] qui utilise la notion de base de Horn. Une formule Fest q-Horn, si et seulement si toute clause C 2 F contient au maximumdeux littéraux n'appartenant pas à la base de Horn de F .Exemple : Soit F2 = f fx1;:x2;:x3g, f:x1;:x2;:x3g, f:x3, x4g, f:x1,:x2, x5, x6g, f:x1;:x3;:x6; x7g, f:x2;:x4; x6; x7g, fx6;:x7g, fx5; x6gg.La base de Horn de F2 est fx1; x2; x3; x4g. On peut véri�er que les clausesse répartissent en trois groupes : les trois premières clauses ne contiennent35

Chapitre 3. Générer en utilisant un ordre sur les variablesque des littéraux sur fx1; x2; x3; x4g ; les trois suivantes contiennent deslittéraux négatifs sur fx1; x2; x3; x4g et un ou deux littéraux (négatifs oupositifs) sur fx5; x6; x7g ; les deux dernières clauses contiennent deux lit-téraux sur l'ensemble fx5; x6; x7g. Ces deux dernières clauses forment laformule Reste(F2).On peut en outre voir que pour toute formule q-Horn F , Reste(F)est une formule binaire. Si Reste(F) est satisfaisable, alors Reste(F) estHorn renommable (cf Section 2.4). Dans ce cas, Reste(Reste(F)) = ;,donc F est presque Horn, et on peut appliquer l'algorithme proposé ensection 3.2.Proposition 26 Si F est q-Horn, alors on peut générer à délai O(nN)tous ses modèles.Preuve : Il su�t dans un premier temps de tester si F est satisfaisable(en utilisant l'algorithme de Boros et al. par exemple). Si la réponse estnon, alors F n'admet aucun modèle, la proposition est donc véri�ée. Sila réponse est oui, alors F est presque Horn, donc la proposition 25 nousdonne un algorithme permettant de générer tous les modèles de F à délaiO(nN). 2

36

Chapitre 4Générer en utilisant lesrésultats sur SATSommaire4.1 Introduction 374.2 Formules Horn généralisées 374.3 Hiérarchies de Pretolani 394.1 IntroductionIl existe des classes de formules pour lesquelles les propriétés P1 etP2 ne sont pas véri�ées. Nous allons dans cette section étudier les classesde formules dont la reconnaissance est polynômiale et qui véri�ent lapropriété P1, qui traduit une certaine stabilité de la classe par rapportà la résolution unitaire. C'est le cas des formules Horn généralisées ouencore des hiérarchies de Pretolani. On va voir que pour ces formules, ilest aussi possible de générer toutes les solutions à délai polynômial. On nepeut malheureusement pas traiter ce problème en utilisant uniquement larésolution unitaire comme dans les chapitres précédents, mais il est toutde même possible en utilisant les résultats obtenus sur ces formules pourla résolution du problème SAT, de générer e�cacement tous les modèles.4.2 Formules Horn généraliséesSoient l un littéral et x une variable, dans cette section, on rappelleque l'on note Fl = fC n flg j C 2 F; l =2 Cg, cette formule correspondaux simpli�cations de la formule F dans laquelle on a a�ecté la valeurvraie au littéral l. On note F n x = fC n fx;:xg j C 2 Fg la formuledans laquelle on a e�acé toutes les occurences de x et de :x.37

Chapitre 4. Générer en utilisant les résultats sur SATNous présentons ici les formules GHorn, qui ont été présentées parYamasaki et Doshita [48].Dé�nition 11 (formule GHorn) F est GHorn si F est Horn ou s'ilexiste une variable x (appelée candidat) telle que :1. Fx est Horn.2. F n x est GHornExemple : Soit F6 = ffx1; x2;:x4; x5g , fx2;:x3; x4g, f:x1;:x3;:x4;:x5g,f:x2; x3;:x4gg. On va véri�er ici que F6 est GHorn. C'est la variablex2 qui va nous servir de premier candidat. On véri�e que (F6)x2 =ff:x1;:x3;:x4;:x5g; fx3;:x4gg est bien Horn. Il reste à montrer queF6 n x2 est bien GHorn, avec F6 n x2 = ffx1;:x4; x5g , f:x3; x4g, f:x1,:x3, :x4, :x5g, f:x3;:x4gg. On prend x1 comme candidat, et on ob-tient : (F6nx2)x1 = ff:x3; x4g; f:x3;:x4;:x5g; f:x3;:x4gg est Horn, etla formuleF6nx2; x1 = ff:x4; x5g; f:x3; x4g; f:x3;:x4;:x5g; f:x3;:x4ggest elle aussi Horn. On a donc bien que F6 est GHorn.Gallo et Scutella [27] ont élargi cette classe et en ont tiré la hiérarchiede classes f�g dont la classe de base est GHorn (i.e. Horn= �0 et GHorn=�1).Dé�nition 12 (hiérarchie f�g) F appartient à la classe �i si F 2�i�1 ou s'il existe une variable x telle que :1. Fx 2 �i�12. F n x 2 �iGallo et Scutella [27] donnent un algorithme polynômial (pour k �xé)pour la reconnaissance des formules de la classe �k.Proposition 27 Si F est une formule de la classe �i, alors toute formuleF 0 telle que pour toute clause C 0 2 F 0, il existe une clause C 2 F avecC 0 � C, alors F 2 �i.Preuve : Cette proposition est évidente au niveau 0, puisque �0 =Hornet que si C contient au plus un littéral positif, alors il en est forcementde même pour C 0.Supposons cette proposition vraie pour tout i � k� 1, on va prouverpar récurrence qu'elle est vraie pour k.La formule F est �k, donc il existe une suite de variables (x1; : : : ; xj)telle que : Fx1 2 �k�1, (F n x1)x2 2 �k�1, . . . (F n x1 : : : n xj�1)xj 2 �k�1et F n x1 : : : n xj 2 �k�1. F 0x1 est une formule dont chaque clause estincluse dans une clause de Fx1 (par hypothèse de la proposition), donc38

4.3. Hiérarchies de Pretolanipar hypothèse de récurrence F 0x1 est �k�1, il en est de même pour toutesles formules (F 0 n x1 : : : n xh�1)xh (h � j) et pour (F 0 n x1 : : : n xj�1)xj ,ainsi que pour la formule F 0 n x1 : : : n xj, ce qui implique que la formuleF 0 est bien élément de la classe �k. 2Proposition 28 Si F est une formule de la classe �i, alors pour toutensemble de clauses unitaires U , on a Noyau(F [U) 2 �iPreuve : Conséquence immédiate de la Prop. 27. 2Proposition 29 Pour tout k, soit F 2 �k et U un ensemble de clausesunitaires, on peut tester en temps O(Nk+1) si F [U est satisfaisable (oùN représente la longueur de F [U).Preuve : Kleine-Büning a prouvé [35] que la k-résolution était complètepour les formules de �k�1. Ce qui donne un algorithme O(Nk+1) pourtester la satisfaisabilité de toute formule de �k.Une formule est satisfaisable ssi Unit est cohérent et Noyau est sa-tisfaisable (Prop. 1). Pour la formule F [U il est possible de calculerNoyau(F [U) et l'ensemble Unit(F [U) en temps linéaire. CommeNoyau(F [U) est �k (Prop. 28), on peut tester sa satisfaisabilité entemps O(Nk+1). Ceci implique que l'on peut tester la satisfaisabilité deF [U en temps O(Nk+1). 2La proposition 2 implique que l'on peut générer avec un délai poly-nômial pour un k �xé, toutes les solutions d'une formule appartenant àla classe �k.Malheureusement Eiter et al. [23] ont prouvé que tester si une formulequelconque pouvait être renommée en une formule �k était NP-completpour tout k � 1. Mais si on sait qu'une formule est �k renommable(par construction par exemple) et que l'on connaît le renommage, alorsgénérer toutes ses solutions revient à générer toutes les solutions d'uneformule �k, et peut donc être fait avec un délai polynômial.4.3 Hiérarchies de PretolaniPretolani [40] a généralisé les travaux de Gallo et Scutella [27]. Ilaméliore le schéma de décomposition de Gallo et Scutella, il étudie sonapplication à une classe de base, générique, dont la satisfaisabilité peutêtre testée en temps polynômial, autre que Horn. Il propose une famillede hiérarchies polynômiales : une hiérarchie polynômiale fCg est une suitede classes imbriquées (i.e. Ci � Ci+1 pour tout i > 0) telle qu'une formuleavec n variables appartienne à toute classe Ci avec i � n�1. Résoudre la39

Chapitre 4. Générer en utilisant les résultats sur SATsatisfaisabilité d'une formule de Ci se ramène à résoudre la satisfaisabilitéde O(ni) formules de la classe de base C. Si on utilise les formules deHorn comme classe de base, on obtient la hiérarchie f�g qui est telle que�i (�i pour tout i positif.Nous utilisons les notations présentées à la section précédente. Soientl un littéral et x une variable, on note Fl = fC n flg j C 2 F; l =2 Cg etF n x = fC n x;:x j C 2 Fg.Soit C une classe de formules. On dé�nit la hiérarchie polynômialefCg de la façon suivante.Dé�nition 13 (hiérarchie polynômiale fCg) Soit C0 = C. Pour touti > 0, F 2 Ci si F 2 Ci�1 ou s'il existe une variable x 2 V (appelée lecandidat) telle que une des deux conditions suivantes soit véri�ée.� Fx 2 Ci�1 et F:x 2 Ci� F:x 2 Ci�1 et Fx 2 CiP 3 (classe close par �xation) Une classe C est dite close par �xa-tion, si pour toute formule F 2 C, on a F:x 2 C Fx 2 C pour toutx 2 V .On voit facilement que si la classe C est close par �xation, alors touteformule de C a la propriété P1. La réciproque n'étant pas toujours vraie.Cette propriété est véri�ée par les classes des formules Horn, Horn renom-mables, binaires, que nous avons déjà vues et aussi par les classes Hornétendues, Horn étendues simples et ordonnées que nous verrons dans lessections et chapitres suivants.Supposons que la classe C est close par �xation, et qu'il existe un al-gorithme de reconnaissance pour les formules de C qui est de complexitéO(g(N)). Dans ce cas Pretolani [40] propose un algorithme O(nig(N))pour la reconnaissance des formules de la classe Ci. Cet algorithme consisteen ni tests de reconnaissance pour la classe de base C. Comme sous-produit de cet algorithme de reconnaissance on récupère une séquencede candidats correspondant à la formule. L'algorithme de reconnaissanceutilise le théorème suivant.Théorème 30 Dans une hiérarchie polynômiale fCig, si C est close par�xation, alors il en est de même pour tous les Ci.Pretolani propose ensuite un résultat sur le test de satisfaisabilitéd'une formule appartenant à une classe Ci de la hiérarchie polynômialefCg.Proposition 31 Si F 2 Ci et que l'on connaît un ensemble de séquencesde candidats pour F , si le test de satisfaisabilité pour la classe C a unecomplexité O(h(N)), alors on peut tester la satisfaisabilité de F en tempsO(nih(N)).40

4.3. Hiérarchies de PretolaniPreuve : La preuve de cette proposition est donnée par Pretolani dans[40], nous en reprenons ici les grandes lignes.Pour toute formule G appartenant à la classe C, on note ResoudC(G)le résultat de l'algorithme qui test de satisfaisabilité de toute formule dela classe C appliqué à la formule G. L'algorithme PSAT (Fig. 4.1) permetde déterminer pour une formule appartenant à Ci si elle est satisfaisable.On peut noter que PSAT consiste en ni appels à ResoudC. Mais le prin-cipal coût de cet algorithme provient du calcul de séquences de littérauxcandidats. Ce calcul est e�ectué lors du test de reconnaissance de la classeCi, donc cet algorithme a bien une complexité O(nih(N)). 2Algorithme PSATEntrée : Un nombre i, une formule F 2 Ci ;Sortie : Vrai si F est satisfaisable, Faux sinon ;débutSi i = 0 alors retourner ResoudC(F) ;h 0 ;Trouver une séquence de littéraux candidats (l1; : : : ; lk) pour F ;tant que (h < k) do ;h++ ;l lh ;si PSAT(i� 1;Fl) = Vrai alors retourner Vrai ;F = F:l ;�n tant que ;retourner PSAT(i� 1;F) ;�n. Fig. 4.1 � Algorithme PSATSi C est une classe dont l'algorithme de reconnaissance a une com-plexité en temps qui estO(g(N)), et que l'algorithme de test de satisfaisa-bilité ResoudC a une complexité O(h(N)) et que C est close par �xation,alors on peut tester en temps O(ni(g(N) + h(N))) si une formule de laclasse Ci est satisfaisable.Proposition 32 Soit C une classe close par �xation, avec un algorithmede reconnaissance dont la complexité est O(g(N)) et un algorithme de testde satisfaisabilité de complexité O(h(N)). Pour toute formule F 2 Ci,on peut générer toutes les solutions de F avec un délai O(ni+1(g(N) +h(N))).Preuve : Comme Ci est clos par �xation, Noyau(F [U) 2 Ci. Donc onpossède un algorithme O(ni(g(N)+h(N))) pour tester si Noyau(F [U)41

Chapitre 4. Générer en utilisant les résultats sur SATest satisfaisable. La proposition 2 implique le résultat. 2

42

Chapitre 5Impossibilité de générer à délaipolynômialSommaire5.1 Classes trivialement satisfaisables 435.2 Quad . 445.3 Hiérarchies f
g et f�g 465.1 Classes trivialement satisfaisablesOn peut remarquer que si une formule F ne contient pas de clausetotalement négative (resp. totalement positive), alors elle est trivialementsatisfaisable. Elle admet pour modèle l'ensemble fx j x 2 V g (resp.f:x j x 2 V g).Malheureusement ces deux classes ne sont formées sur aucune pro-priété structurelle de la formule, et si F appartient à une telle classe,il n'y a aucune raison pour que la même formule F dans laquelle on adonné la valeur vraie à un littéral quelconque l (Fl) en fasse aussi partie.Nous montrons ici que si P6=NP, générer tous les modèles des formulesde ces classes ne peut être fait avec un délai polynômial.Dé�nition 14 (T+;T�) On appelle classe T+ la classe des formules donttoutes les clauses contiennent au moins un littéral positif.On appelle classe T� la classe de formules dont toutes les clausescontiennent au moins un littéral négatif.Exemple : La formule ffx1;:x2; x3g; fx1; x2; x3g; fx2;:x3gg appartientà la classe T+. La formule ff:x1; x2; x3; x4g; fx2;:x3g; f:x1gg appartientà la classe T�. 43

Chapitre 5. Impossibilité de générer à délai polynômialProposition 33 S'il existe un algorithme de génération à délai polynô-mial pour les formules de T� (resp. T+), alors il existe un algorithme degénération à délai polynômial pour toute formule de logique proposition-nelle.Preuve : Soit F une formule quelconque avec un ensemble de variablesV . Soit z 62 V . On construit la formule G = fC j C 2 F et neg(C) 6=;g[fC 0 j 9C 2 F ; neg(C) = ; etC 0 = C [f:zgg[ffz;:xig j 8xi 2 V g.Soit M un modèle de G. Si :z 2M , alors nécessairementM doit conte-nir les littéraux :xi pour tout i (1 � i � n) car les clauses fz;:xigappartiennent à G. Comme toutes les clauses de G contiennent un litté-ral négatif, l'ensemble M = f:xi j 1 � i � ng [f:zg est un modèle deG. Cet ensemble est donc le seul modèle de G contenant le littéral :z.Tous les autres modèles de G contiennent donc z. On peut remarquer queGz = F , donc si M est un modèle de G contenant z, alors M n fzg estun modèle de F . Si on peut générer à délai polynômial tous les modèlesde G, alors on obtient un moyen de générer à délai polynômial les mo-dèles de F (puisque le délai entre deux modèles de F est au plus égalà deux fois le délai entre deux modèles de G, ce qui reste polynômial).CommeF est une formule quelconque, ceci n'est possible que si P=NP. 2Exemple : Soit F1 = f fx1; x2; x3g, fx1;:x2;:x3g, f:x1;:x4;:x5g,fx1; x2; x5g, fx2;:x3;:x4gg on peut construire la formule G1 = ff:z, x1,x2, x3g, fx1;:x2;:x3g, f:x1;:x4;:x5g, f:z; x1; x2; x5g, fx2;:x3;:x4g,fz;:x1g, fz;:x2g, fz;:x3g, fz;:x4g, fz;:x5gg. On peut véri�er quepour tout modèleM de G1, on a soit :z 2M , dans ce cas, le seul modèlepossible est M = f:x1;:x2;:x3;:x4;:x5;:zg, soit z 2 M et M n fzgest un modèle de F1.A moins que P ne soit égal à NP, si une classe C contient la classeT� (resp. T+), il est impossible de donner un algorithme de génération àdélai polynômial pour les formules de C.5.2 QuadDalal [19] a présenté une classe de formules pour lesquelles il proposeun algorithme quadratique de résolution du problème Sat, malheureuse-ment, on ne peut pas générer les modèles d'une formule Quad avec undélai polynômial, car Quad contient les classes T+ et T�.Dé�nition 15 (classe Racine) Une formule F appartient à la classeRacine si l'une des conditions suivantes est satisfaite :� F contient la clause vide,� F 2 T+,44

5.2. Quad� F 2 T�,� Toute clause de F est de longueur deux.Une clause C 0 est une sous-clause de la clause C si C 0 � C. Une sous-clause C 0 de C est dite maximale, si j C j � j C 0 j= 1. Pour toute clauseC, la clause :C est dé�nie comme l'ensemble fl j l 2 Cg, et la formule� C est l'ensemble fflg j l 2 Cg.Exemple : La clause fx1; x3g est une sous-clause maximale de la clauseC = fx1;:x2; x3g, alors que la clause fx1g n'est qu'une sous-clause (pasmaximale) de C. De même, :C est la clause f:x1; x2;:x3g et � C estla formule ff:x1g; fx2g; f:x3gg.Pour dé�nir les formules Quad, Dalal utilise un ordre total sur l'en-semble de toutes les clauses. Soit � un ordre total arbitraire sur unensemble de littéraux, cet ordre induit un ordre total sur les clauses :C 0 � C ssi C 0 (C ou il existe un littéral l dans C nC 0 tel que l � q pourtout littéral q de C 0 n C (on remarque que la relation n'est pas ré�exiveC 6� C). � détermine un ordre total sur les clauses de F . Pour touteclause de F , � détermine en outre un ordre total sur ses sous-clausesmaximales. Dans la dé�nition présentée ci-dessous, on utilisera les nota-tions première ou suivante dans le contexte de cet ordre sur les clauseset sur les sous-clauses maximales.Dé�nition 16 (Quad) Une formule F appartient à la classe Quad sil'une des conditions suivantes est véri�ée.� Noyau(F) appartient à la classe Racine,� Soit C 0 la première sous-clause maximale de la première clause C deNoyau(F) pour laquelle Noyau(F [f:C 0g) appartient à la classeRacine. Une des deux propriétés suivantes est véri�ée.� Noyau(F [f:C 0g) est satisfaisable,� La formule (F n fCg) [fC 0g appartient à Quad.Dalal [19] a présenté un algorithme quadratique (O(N2k) où N est lalongueur totale de la formule et k la longueur de la plus grande clause)permettant de tester si une formule appartient à la classe Quad. Il proposeen outre un algorithme de la même complexité (O(N2k)) pour tester lasatisfaisabilité de toute formule Quad.Malheureusement la classe Quad contient les classes T� et T+, la pro-position 33 implique donc que si P est di�érent de NP, il n'existe aucunalgorithme à délai polynômial pouvant générer les modèles de toutes lesformules de la classe Quad. 45

Chapitre 5. Impossibilité de générer à délai polynômial5.3 Hiérarchies f
g et f�gDalal et Etherington [20] ont étendu les résultats de Gallo et Scutella[27] (Chap. 4), ils ont présenté deux hiérarchies de formules f
g et f�gdont la satisfaisabilité peut être testée en temps polynômial. Malheureu-sement, pour tout k � 0, T+ et T� sont incluses dans �k et
k, doncil est impossible de générer à délai polynômial les modèles des formulesappartenant aux classes �k et
k (k � 0).Dalal et Etherington utilisent pour dé�nir les hiérarchies f
g et f�gla notion de multi-sous-ensemble v à la place de la notion classique desous-ensemble �. On dit que fA1; A2; : : : ; Akg v fB1; B2; : : : ; Blg ssipour tout i (1 � i � k), il existe j (1 � j � l) tel que Ai � Bj.On rappelle que l'on note Lit(F) l'ensembledes littéraux apparaissantdans la formule F .Dé�nition 17 (hiérarchies f�g et f
g) Dalal et Etherington ont dé-�ni récursivement les classes �k et
k de la façon suivante.� F 2 �0 ssi une des propriétés suivantes est véri�ée :� la clause vide appartient à F ;� F 2 T+ ;� F 2 T� ;� Il existe une clause unitaire positive fxg 2 F telle que Fx 2�0.� Pour tout k, F 2
k ssi l'une des propriété suivante est véri�ée :� F 2 �k ;� pour tout littéral l 2 Lit(F), on a Noyau(F [flg) 2 �k, etNoyau(F [flg) 2
k ;� pour tout littéral l 2 Lit(F), on a Noyau(F [flg) v F etNoyau(F [fxg) 2 �k�0 est l'ensemble des formules pour lesquelles on peut déterminer lasatisfaisabilité immédiatement. La classe
k contient les formules pourlesquelles propager la valeur vrai pour n'importe quel littéral produitune formule appartenant soit à
k, soit à �k. Les classes �k contiennenttoutes les formules pour lesquelles il existe un littéral dont la propagationde la valeur produit une formule appartenant soit à
k�1 soit à �k.On remarque que T+ (�0 et T� (�0 comme en plus �k (
k (�k+1, on obtient que pour tout k,T+ [T� (�k et T+ [T� (
k. Laproposition 33 implique donc que si P est di�érent de NP, il n'existepas d'algorithme polynômial pour générer tous les modèles des formulesappartenant aux classes �k et
k (pour k � 0).46

Chapitre 6ConclusionDans cette partie, on a pu voir que pour la quasi totalité des classespolynômiales, on peut trouver un algorithme à délai polynômial pourgénérer toutes les solutions.Si on connaît une méthode pour tester la satisfaisabilité des formulesd'une classe, alors cette méthode utilise une propriété structurelle de laclasse. On s'appuie sur cette structuration de la formule pour pouvoir engénérer tous les modèles.Les classes polynômiales pour lesquelles nous ne pouvons pas générerles modèles à délai polynômial, sont celles contenant les classes T+ (lesformules ayant au moins un littéral positif dans chaque clause) ou/et T�(les formules ayant au moins un littéral négatif dans chaque clause). Amoins que NP ne soit égal à P, il n'existe pas d'algorithme de générationà délai polynômial pour ces formules.Classe Reconnaissance Satisfaisabilité GénérationHorn O(N) O(N) O(nN)Horn renommable O(N) O(N) O(nN)Binaires O(N) O(N) O(nN)Équilibrées polynômial O(N) O(nN)�k O(nkN) O(nkN) O(nk+1N)�k-renommable NP-complet O(nkN) O(nk+1N)Quad O(N2) O(N2) impossible si P6=NP
k et �k O(nk+1) O(nk+1) impossible si P6=NPPresque Horn(*) O(nN) O(1) O(nN)q-Horn O(N) O(N) O(nN)(*) sans clause unitaireFig. 6.1 � Génération à délai polynômial : tableau provisoireDans les parties suivantes, nous étudions d'autres classes de formulespour lesquelles on peut générer toutes les solutions avec un délai po-47

Chapitre 6. Conclusionlyômial. Un tableau complet est présenté dans la conclusion générale decette thèse.

48

Deuxième partieFormules Horn étendues

49

Chapitre 1PrésentationNous avons vu dans le Chapitre 2 de la Partie I que si une classe deformules véri�e les deux propriétés P1 et P2, alors on peut générer toutesles solutions des formules de cette classe avec un délai O(nN) (où n estle nombre de variables et N la longueur totale de la formule) avec commeunique outil la résolution unitaire. La première de ces propriétés reposesur une stabilité de la classe par la résolution unitaire, la seconde requiertque toute formule de la classe ne comportant pas de clause unitaire soitsatisfaisable.Nous étudions dans cette partie un ensemble de classes de formules,qui véri�ent encore ces deux propriétés. La première de ces classes, laclasse des formules Horn étendues a été introduite par Chandru et Hoo-ker [12]. Nous présentons dans le Chapitre 2 la dé�nition de cette classe,nous montrons comment on peut tester en temps linéaire la satisfaisa-bilité d'une telle formule, et nous montrons qu'on peut générer à délaipolynômial les modèles de telles formules. Nous présentons aussi l'originede ces formules. Elles sont issues des résultats de Chandrasekaran [10] surla programmation linéaire ; nous expliquons ici comment ce résultat s'ap-plique aux formules Horn étendues.Malheureusement, il n'existe pas actuellement d'algorithme polynô-mial pour tester si une formule est Horn étendue. Swaminathan et Wag-ner [46] ont donc présenté une sous-classe des formules Horn étenduesqu'ils ont appelée classe Horn étendue simple. Ils ont proposé un algo-rithme de reconnaissance quadratique pour les formules de cette classe.Schlipf et al. [44] ont remarqué que si on relâchait une des contraintes dela dé�nition des formules Horn étendues (resp. Horn étendues simples),on obtenait une classe plus grande qui avait les mêmes propriétés. Nousavons appelé cette classe les formules Horn élargies (resp. Horn élargiessimples). Nous présentons dans le Chapitre 3, une étude de la structuredes formules Horn élargies simples qui nous conduit à un algorithme li-néaire de reconnaissance de ces formules. Nous présentons en outre unalgorithme linéaire permettant de tester si une formule est Horn étenduesimple. 51

Chapitre 1. Présentation

52

Chapitre 2Les formules Horn étenduesSommaire2.1 Présentation 532.2 Dé�nitions 542.3 Satisfaisabilité et génération à délai po-lynômial . 552.4 Origine . 582.4.1 Préliminaires 582.4.2 Théorème de Chandrasekaran 592.4.3 Motivations des formules Horn étendues . 602.4.4 Exemple 612.5 Conclusion 622.1 PrésentationChandru et Hooker[12] ont présenté la classe des formules Horn éten-dues, il s'agit d'une généralisation de la classe des formules de Horn pourlaquelle le problème SAT est aussi facile à traiter que pour Horn, enutilisant comme pour Horn la résolution unitaire. Nous allons voir quecette propriété permet aussi de générer toutes les solutions pour de tellesformules avec un délai O(nN) (où N est la longueur totale de la formuleet n le nombre de ses variables).Une formule est Horn étendue si ses variables correspondent aux arcsd'une arborescence enracinée (i.e. un arbre orienté dans lequel tous lesarcs sont orientés en partant de la racine), de telle façon que pour chaqueclause les variables apparaissant positivement étiquettent un chemin etles variables apparaissant négativement étiquettent un ensemble de che-mins commençant à la racine plus, le cas échéant, un chemin commençantau même sommet que le chemin positif. Les formules de Horn sont celles53

Chapitre 2. Les formules Horn étenduespour lesquelles l'arbre associé est une étoile (i.e. l'arborescence enracinéedont tous les arcs partent de la racine).La découverte de ces formules découle du théorème de Chandraseka-ran. Ce théorème caractérise les ensembles d'inéquations linéaires pourlesquelles un solution 0-1 peut toujours être trouvée (s'il en existe une)en arrondissant une solution réelle, qui elle peut être calculée par pro-grammation linéaire. Ils ont prouvé qu'un ensemble d'inégalités avec descoe�cients dans 0, 1, -1 correspondant à une arborescence telle que dé-crite ci-dessus satisfait les conditions du théorème de Chandrasekaran.2.2 Dé�nitionsNous rappelons les notations présentées dans la Partie I et présentonsensuite la dé�nition des formules Horn étendues.Une arborescence est un graphe orienté T , dont le graphe sous-jacentest un arbre, et qui a exactement un noeud de degré entrant égal à zéro.Cet sommet est appelé la racine de T .On rappelle que dans toute cette partie, F désigne une formule etV l'ensemble de ses variables. Soit U � V et T une arborescence dontles arcs sont étiquetés (de manière unique) par les éléments de U . Soitx 2 U , on notera �!x l'arc de T étiqueté par x. On note TW le sous-grapheorienté de T formé par les arcs de T étiquetés par les éléments de W .On rappelle que nous travaillons en utilisant la forme normale conjonc-tive ; une formule est donc vue comme un ensemble de clauses, et uneclause comme un ensemble de littéraux. Si C est une clause, pos(C) =fx 2 V j x 2 Cg, et neg(C) = fx 2 V j :x 2 Cg, si x est une variableon a aussi CNeg(x) = fC 2 F=:x 2 Cg et CPos(x) = fC 2 F=x 2 Cg.Dé�nition 18 Soit T une arborescence avec une racine r et des arcsétiquetés par les variables de V (de manière unique). Soit C 2 F uneclause telle que Tpos(C) est un chemin orienté (qui peut être vide).La clause C est Horn étendue par rapport à T , si neg(C) = N1 [: : : [Nk avec Ni \ Nj = ; (1 � i < j � k), TNi est un chemin orientéqui commence à la racine r (pour 1 � i � k � 1), et TNk est un cheminorienté (qui peut être vide) qui commence au même sommet que Tpos(C).F est Horn étendue par rapport à T , si chaque clause C 2 F est Hornétendue par rapport à T . Une formule est Horn étendue si elle est Hornétendue par rapport à une arborescence.Exemple : Soit F1 la formule telle que F1 = fC1; C2; C3; C4g. Où C1 =f:x1;:x2; x4; x5;:x7g,C2 = f:x1;:x3;:x4; x5g,C3 = fx1; x2;:x3;:x4;:x5get C4 = f:x1;:x3;:x6g. On peut voir (Fig. 2.1) que la clause C1 est Hornétendue par rapport à T . Le chemin comportant l'arc �!x7 commence aumême sommet que le chemin correspondant aux variables x4 et x5, on54

2.3. Satisfaisabilité et génération à délai polynômialpeut en outre voir que le chemin �!x1,�!x2 commence à la racine de l'arbo-rescence. Le lecteur pourra véri�er sur la Figure 2.2 que toutes les clausesde F1 sont Horn étendues par rapport à T . F1 est donc Horn étendue parrapport à T . On peut donc dire que F1 est Horn étendue.
r

A

B

C

F G

E

D

x1

x2

x3

x5

x4
x6

x7

Fig. 2.1 � La clause C1 est Horn étendue par rapport à T
r

A

B

C

F G

E

D

x1

x2

x3

x5

x4
x6

x7Fig. 2.2 � Arborescence T dont les arcs sont étiquetés par les variablesde F12.3 Satisfaisabilité et génération à délai po-lynômialChandru et Hooker [12] ont remarqué que la résolution unitaire, per-met comme pour Horn, de tester si les formules Horn étendues sont sa-tisfaisables. Nous expliquons ici comment ce processus fonctionne. Nousprouvons en outre que l'on peut générer toutes les solutions des formulesHorn étendues avec un délai O(nN). 55

Chapitre 2. Les formules Horn étenduesOn rappelle le principe de la résolution unitaire, on dit qu'une clauseC est dérivable de F par résolution unitaire s'il existe une suite de clausesC1; : : : ; Cp telle que Cp = C et pour tout i (1 � i � p) ; ou bien Ci 2 Fou bien il existe j; k < i et un littéral l véri�ant Cj = Ci[flg et Ck = flg.Soit Unit(F) l'ensemble des clauses unitaires dérivables de F parrésolution unitaire. On sait que si Unit(F) n'est pas cohérent alors F estnon satisfaisable. La réciproque est fausse dans le cas général.Soit Noyau(F) l'ensemble des clauses obtenues à partir de F en ôtantles clauses qui contiennent un élément de Unit(F), et en supprimant dansles clauses restantes tous les complémentaires des littéraux de Unit(F).Exemple : Soit F2 = f f:x1;:x3;:x4; x6; x8g, f:x1; x3; x5;:x6g, fx1,:x2, :x3, :x4, x7g, fx2; x6g, f:x6gg. On a Unit(F2) = fx2;:x6g etNoyau(F2) = f:x1;:x3;:x4; x8g, fx1:x3;:x4; x7g.Proposition 34 Si F est une formule Horn étendue, alors Noyau(F)est aussi une formule Horn étendue.Preuve : Soit T une arborescence telle que F est Horn étendue par rap-port à T . Soit V l'ensemble des variables de F et VN l'ensemble des va-riables de Noyau(F). Soit TN l'arborescence étiquetée par les variablesde VN obtenue en supprimant de T tous les arcs étiquetés par les variablesde V nVN et en fusionnant l'origine et l'extrémité de tels arcs. Soit X unensemble de variables, si les variables de X étiquettent un chemin dans Talors les variables deX \VN étiquettent un chemin dans TN . Soit CN uneclause de Noyau(F), il existe une clause C 2 F telle que CN = C \ VN .Comme C est Horn étendue par rapport à T , on peut déduire que CNest Horn étendue par rapport à TN . Donc Noyau(F) est Horn étendue. 2Exemple : Comme F2 est Horn étendue par rapport à l'arborescenceprésentée Figure 2.3, on en déduit que Noyau(F2) est Horn étendue parrapport à l'arborescence de la Figure 2.4.
x1 x2

x4 x5

x6
x7 x3

x8Fig. 2.3 � F2 est Horn étendue par rapport à T56

2.3. Satisfaisabilité et génération à délai polynômial
x1

x7

x8

x4 x5

x3Fig. 2.4 � Noyau(F2) est Horn étendue par rapport à T 0Proposition 35 Soit F une formule Horn étendue, si F ne contient pasde clause unitaire, alors F est satisfaisable.Preuve : Soit T une arborescence telle que F soit Horn étendue par rap-port à T . Soit profondeurT (x) une fonction qui indique pour chaque va-riable x à quelle distance l'arc�!x est de la racine (on pose profondeurT (x) =0 pour toutes les variables telles que �!x est un arc sortant de la racine).SoitM = fx j profondeurT (x)modulo 2 = 1g[f:x j profondeurT (x)modulo 2 =0g, On va prouver que M est un modèle pour F . Soit C une clausede F , on va prouver que C \ M 6= ;. Par hypothèse, C contient aumoins deux littéraux. Comme F est Horn étendue par rapport à T ona : neg(C) = N1 [: : : [Nk avec Ni \ Nj = ; (1 � i < j � k), TNi estun chemin orienté qui commence à la racine r (pour 1 � i � k � 1), etTNk est un chemin orienté (qui peut être vide) qui commence au mêmesommet que Tpos(C).� neg(C) = ;. On sait que Tpos(C) est un chemin dans T donc deuxvariables de pos(C) apparaissant à deux niveaux successifs de Tdonc une au moins de ces variables est valuée positivement, doncC est satisfaite par M .� neg(C) 6= ; and Nk 6= ;.Si pos(C) 6= ;, ceci implique qu'il existe un sommet s de T et deuxvariables x et y telles que x 2 pos(C), y 2 neg(C) et �!x a pourorigine s tout comme�!y . D'où profondeurT (x) = profondeurT (y),donc un des deux littéraux est vrai. La clause C est donc satisfaitepar M .Si pos(C) = ; alors soit card(Nk) � 2 dans ce cas TNk est unchemin dont deux arcs sont à des niveaux di�érents et donc l'unau moins est de profondeur paire, soit k > 1 et on est dans le cassuivant.� neg(C) 6= ; and k > 1, ceci implique que TN1 est un cheminqui commence à la racine de T , soit �!x le premier arc de TN1,profondeurT (x) = 0, donc :x 2 M . La clause C est donc satis-faite par M . 57

Chapitre 2. Les formules Horn étendues2Exemple : f:x1;:x3; x4; x5; x7;:x8g est donc un modèle de Noyau(F2).Ces deux propositions conduisent naturellement à un algorithme pourtester la satisfaisabilité des formules Horn étendues. Il su�t de calculerUnit(F), si cet ensemble est cohérent, alors F est satisfaisable puisquel'on sait que Noyau(F) est Horn étendu et qu'il ne contient pas de clauseunitaire.Exemple : f:x1; x2;:x3; x4; x5;:x6; x7;:x8g est un modèle de F2.Proposition 36 Si F est Horn étendue, alors pour tout ensemble declauses unitaires U , F [U est une formule Horn étendue.Preuve : Soit T une arborescence reconnaissant F , toute clause unitaireC est Horn étendue par rapport à T . Si C est une clause unitaire posi-tive, C = fxg, alors l'arc �!x forme obligatoirement un chemin dans T .Si C = f:xg est une clause unitaire négative, alors �!x forme un chemindans T . L'origine de �!x est le sommet d'origine du chemin (vide) corres-pondant aux littéraux positifs de C. 2On a prouvé (Corollaire. 4, Chap. 2, Part. I) que si une classe deformules véri�e les propriétés suivantes, alors on peut générer tous lesmodèles de toute formule de la classe avec un délai O(nN) en n'utilisantque la résolution unitaire.Propriété 1 (P1) C véri�e P1, si pour toute formule F 2 C, pour toutensemble de clauses unitaires U , on a Noyau(F [U) 2 C.Propriété 2 (P2) C véri�e P2, lorsque pour toute formule F 2 C, lefait que toute clause de F soit de longueur supérieure ou égale à deux,implique que F soit satisfaisable.On déduit des Prop. 34, 35 et 36 et du Corollaire 4 que l'on peut gé-nérer avec un délai O(nN) tous les modèles d'une formule Horn étendue.2.4 Origine2.4.1 PréliminairesLa dé�nition des formules Horn étendues [12] est motivée par desrésultats en programmation linéaire appliqués à une modélisation pos-sible du problème SAT. Chandru et Hooker ont créé les formules Hornétendues en recherchant une famille de formules dont la matrice associéevéri�e toujours les propriétés du théorème de Chandrasekaran.58

2.4. OrigineOn rappelle que l'on travaille en Forme Normale Conjonctive et qu'uneformule est donc vue comme un ensemble de clauses, qui sont elles mêmesdes ensembles de littéraux.Une clause, par exemple fx1;:x2g, peut être représentée par uneinéquation sur des variables binaires, dans notre cas x1 + (1 � x2) � 1,où x1 et x2 doivent prendre la valeur 0 ou 1. On dira que xj est vrai sixj = 1, et faux si xj = 0. L'inégalité ci-dessus peut s'écrire x1 � x2 � 0,plus généralement, on peut mettre ces inégalités sous la forme ax � a0,où a est un vecteur ligne dont les composantes sont dans f0; 1;�1g, x estun vecteur colonne (x1; x2; : : : ; xn), et a0 est égal à 1 moins le nombre de�1 dans a. Donc une formule contenant m clauses peut être représentéecomme un système d'inéquations Hx � b, dans lequelH est une matricem � n, x est binaire. Il est clair que la formule est satisfaisable si etseulement si le système suivant a une solution :Hx � b� x � �e (2.1)x � 0Où e est un vecteur de n uns et x est un vecteur colonne d'entiers. La re-laxation linéaire de (2.1) est obtenue en retirant la contrainte portant surle caractère entier de x. La programmation linéaire trouve une solutionde la relaxation linéaire si une telle solution existe.2.4.2 Théorème de ChandrasekaranDans le cas général, un système d'équations du type (2.1) n'a pasforcément de solution entière, Chandrasekaran [10] a exposé une condi-tion su�sante pour qu'un système d'inéquations ait une solution entière.C'est cette condition qui a été utilisée par Chandru et Hooker [12] pourcréer les formules Horn étendues.Soit d�e le plus petit entier supérieur ou égal à �, et pour un vecteurx, la ième composante du vecteur dxe est égale à dxie.Théorème 37 (Chandrasekaran[10]) Considérons le système linéaireAx � b; x � 0, dans lequel A est une matrice entière m� n et b un vec-teur entier. Soit T une matrice carrée n�n non singulière qui véri�e lesconditions suivantes :1. T et T�1 sont entières ;2. Chaque ligne de T�1 contient au plus une entrée négative, et toutesces entrées sont des �1 ;3. Chaque ligne de AT�1 contient au plus une entrée négative, et toutesces entrées sont des �1. 59

Chapitre 2. Les formules Horn étenduesAlors si x est une solution du système linéaire, il en sera de même pourle vecteur T�1dTxe.2.4.3 Motivations des formules Horn étenduesOn rappelle qu'une formule est satisfaisable si et seulement si un sys-tème d'inégalités de la forme (2.1) a une solution. Chandru et Hooker[12] utilisent le théorème 37 pour identi�er les conditions pour lesquelles(2.1) a une solution si sa relaxation linéaire en possède une. Nous al-lons ici montrer que toute formule Horn étendue véri�e les conditions duthéorème de Chandrasekaran.Proposition 38 Soit F une formule Horn étendue par rapport à unarbre T . Soit H la matrice correspondant à la formule F , et A, la matricetelle que : A = � H�I �Où I est la matrice identité.Si F est Horn étendue, alors A véri�e les propriétés du théorème deChandrasekaran.Preuve : On va prouver qu'il existe une matrice de transition T telle queT et T�1 sont entières, chaque ligne de T�1 et de AT�1 contient au plusune entrée négative, qui de plus ne peut être di�érente de �1.On remarque d'abord queAT�1 = � HT�1�T�1 �On doit donc prouver que chaque ligne de T�1 contient au plus une entréepositive (égale à 1) et une entrée négative (égale à -1), et que chaque lignede HT�1 contient au plus une entrée négative (qui doit être égale à �1).Soit T�1 la matrice telle que ses colonnes sont indexées par les som-mets de l'arborescence (sauf la racine) et ses lignes sont indexées par lesarcs de l'arborescence (i.e. par les variables de la formule). T�1sx = �1 sil'arc �!x a pour extrémité le sommet s. T�1sx = 1 si l'arc �!x a pour ori-gine le sommet s. T�1sx = 0 dans tous les autres cas. Chaque arc n'ayantqu'une origine et une extrémité, il est facile de voir, que T�1 véri�e lesconditions.Les éléments de la matriceHT�1, dont les lignes sont indexées par lesclauses de F et les colonnes par les sommets de l'arborescence T , véri�entla propriété suivante pour tout sommet s de T et toute clause C 2 F :HT�1C;s = card(fx 2 neg(C) j �!x entrant en sg) (2.2)�card(fx 2 neg(C) j �!x sortant de sg)+card(fx 2 pos(C) j �!x sortant de sg)�card(fx 2 pos(C) j �!x entrant en sg)60

2.4. OriginePour chaque clause C 2 F , il y a donc au plus un sommet pour lequelcette somme est négative (c'est le dernier sommet de Tpos(C)), mais il nepeut pas être inférieur à �1. Donc HT�1 véri�e bien la propriété : aumaximum une entrée négative par ligne et cette entrée doit être égale à�1.T�1 est une matrice triangulaire (si on ordonne les sommets et lesarcs selon un parcours en profondeur de l'arborescence), dont tous leséléments sur la diagonale sont égaux à �1. Son déterminant est donc�1. T est donc une matrice entière.La matrice A véri�e donc bien les conditions du théorème de Chan-drasekaran. 2Corollaire 39 Si F est Horn étendue alors on peut tester en temps po-lynômial si F est satisfaisable.2.4.4 ExempleExemple : Pour la formuleF1 = fC1; C2; C3; C4g (où C1 = f:x1;:x2; x4; x5;:x7g,C2 = f:x1;:x3;:x4; x5g, C3 = fx1; x2;:x3;:x4;:x5g etC4 = f:x1;:x3;:x6g)dé�nie dans la section 2.2, on a les matrices suivantes :La matriceH représente la formule elle même, chaque ligne représenteune clause et chaque colonne représente une variable, un 1 indique quela variable apparaît dans pos(C) un -1 indique que la variable apparaîtdans neg(C), un 0 signi�e que la variable n'apparaît pas dans C.H = 0BB@ x1 x2 x3 x4 x5 x6 x7C1 �1 �1 0 1 1 0 �1C2 �1 0 �1 �1 1 0 0C3 1 1 �1 �1 �1 0 0C4 �1 0 �1 0 0 �1 0 1CCALa matrice T�1 représente l'arbre T (Figure. 2.2). Les colonnes de T�1sont les sommets de T , les lignes de T�1 sont les arcs de T . On a�ecte 1lorsque l'arc a pour origine le sommet, -1 si le sommet est l'extrémité del'arc et 0 si l'arc ne touche pas le sommet.T�1 = 0BBBBBBBB@ A B C D E F Gx1 �1 0 0 0 0 0 0x2 1 �1 0 0 0 0 0x3 0 0 �1 0 0 0 0x4 0 0 1 �1 0 0 0x5 0 0 0 1 �1 0 0x6 0 0 1 0 0 �1 0x7 0 0 1 0 0 0 �11CCCCCCCCA 61

Chapitre 2. Les formules Horn étenduesLa matriceHT�1 est la multiplication des deux précédentes matrices.HT�1 = 0BB@A B C D E F GC1 0 1 0 0 �1 0 1C2 1 0 0 2 �1 0 0C3 0 �1 0 0 1 0 0C4 1 0 1 �1 0 1 0 1CCA2.5 ConclusionLes formules Horn étendues sont intéressantes, on peut tester leursatisfaisabilité en temps linéaire et générer leurs solutions avec un délaiO(nN) en n'utilisant qu'un outil très simple, la résolution unitaire. Il n'ya malheureusement pas d'algorithme connu pour la reconnaissance desformules Horn étendues. Au chapitre suivant nous présentons la classe desformules Horn étendues simples introduite par Swaminathan et Wagner[46] pour laquelle nous proposons un algorithme de reconnaissance entemps linéaire, cette classe de formules est une restriction de la classeHorn étendue, qui garde les propriétés importantes de cette classe. Letest de satisfaisabilité et la génération à délai polynômial ne nécessitentpas d'autre outil que la résolution unitaire.

62

Chapitre 3Les formules Horn étendues etélargies simplesSommaire3.1 Introduction 633.2 Dé�nitions 643.3 Satisfaisabilité et génération à délai po-lynômial . 663.4 Agrégats . 673.5 Reconnaissance de formules Horn élar-gies simples 713.6 Calcul des arborescences acceptables . . 763.7 Reconnaissance des formules Horn éten-dues simples 803.8 Un cas facile 833.9 Calcul des arborescences viables 853.1 IntroductionComme on ne sait pas encore reconnaître e�cacement les formulesHorn étendues, Swaminathan et Wagner [46] ont introduit une restric-tion qu'ils ont appelée classe des formules Horn étendues simples pourlaquelle ils ont proposé un algorithme quadratique de reconnaissance.Nous étudions ici cette classe ainsi qu'une extension proposée par Schlipfet al [44] que nous avons nommée classe des formules de Horn élargiessimples. Nous proposons des algorithmes linéaires pour reconnaître lesformules Horn étendues simples et Horn élargies simples. Les résultatsprésentés dans ce chapitre sont tirés d'un article de Benoist et Hébrard[4]. 63

Chapitre 3. Les formules Horn étendues et élargies simplesDans ce chapitre, nous allons étudier les formules Horn étenduessimples et Horn élargies simples. Dans un premier temps nous présen-tons les dé�nitions de ces formules. Nous étudions ensuite les propriétésintéressantes de ces formules : le test de satisfaisabilité linéaire n'utilisantque la résolution unitaire, ainsi que la possibilité de générer avec un délaiO(nN) (où N représente la longueur totale de la formule et n le nombrede ses variables) toutes les solutions de ces formules. Nous présentonsensuite un algorithme linéaire de reconnaissance des formules Horn élar-gies simples. Cet algorithme est basé sur l'étude de classes d'équivalencessur les variables, que nous appelons : les agrégats. Nous étudions la struc-ture des agrégats des formules Horn élargies simples, ce qui nous permetde proposer un algorithme linéaire de reconnaissance. Nous présentonsensuite une modi�cation de cet algorithme qui permet de reconnaîtreles formules Horn étendues simples en un temps linéaire. Si de plus onsuppose que la formule étudiée ne contient pas de variable monotone po-sitive, alors cet algorithme n'utilise que des structures de données assezsimples.3.2 Dé�nitionsNous présentons les notations dont on va avoir besoin dans ce cha-pitre, ainsi que les dé�nitions des formules Horn étendues et Horn élargiesainsi que des formules Horn étendues simples et Horn élargies simples quivont être étudiées dans ce chapitre.Une arborescence T est un graphe orienté dont le graphe non orientésous-jacent est un arbre et qui a exactement un noeud dont le degréentrant est zéro : ce noeud est appelé la racine de T . Si T n'a qu'un arcdont l'origine est r, on dira que T a un pied , et on notera cet arc foot(T).Soit U � V et T une arborescence avec des arcs étiquetés (de manièreunique) par les éléments de U . Soit x 2 U , on notera �!x l'arc de T étiquetépar x. Soit x; y 2 U , on dit que �!x est le parent de �!y dans T , s'il existeun sommet v qui est l'extrémité de �!x et l'origine de �!y . S'il existe unchemin orienté commençant avec �!x et �nissant avec �!y on dit que �!x estun ancêtre de �!y . Soit W � U . On note TW le sous-graphe orienté de Tformé par les arcs de T étiquetés par les éléments de W .On rappelle que si C est une clause, pos(C) = fx 2 V j x 2 Cg, etneg(C) = fx 2 V j :x 2 Cg, si x est une variable on a aussi CNeg(x) =fC 2 F=:x 2 Cg et CPos(x) = fC 2 F=x 2 Cg.Dé�nition 19 Soit T une arborescence avec une racine r et des arcsétiquetés par les variables de V (de manière unique). Soit C 2 F uneclause telle que Tpos(C) est un chemin orienté (qui peut être vide).1. La clause C est Horn élargie simple par rapport à T si Tneg(C) estune arborescence dont la racine est r.64

3.2. Dé�nitions2. La clause C est Horn élargie par rapport à T si neg(C) = N1[N2,avec TN1 une arborescence dont la racine est r et TN2 un che-min orienté (qui peut être vide) qui commence au même point queTpos(C).3. La clause C est Horn étendue simple par rapport à T si neg(C) =N1 [: : : [Nk, avec Ni \ Nj = ; (1 � i < j � k), et TNi est unchemin orienté qui commence à la racine r (1 � i � k).4. La clause C est Horn étendue par rapport à T , si neg(C) = N1 [: : : [Nk avec Ni \ Nj = ; (1 � i < j � k), TNi est un cheminorienté qui commence à la racine r (pour 1 � i � k � 1), et TNkest un chemin orienté (qui peut être vide) qui commence au mêmesommet que Tpos(C).F est Horn élargie simple (Horn élargie, Horn étendue simple, Hornétendue) par rapport à T , si chaque clause C 2 F est Horn élargie simple(Horn élargie, Horn étendue simple, Horn étendue) par rapport à T .Une formule est Horn élargie simple (Horn élargie, Horn étendue simple,Horn étendue) si elle est Horn élargie simple (Horn élargie, Horn étenduesimple, Horn étendue) par rapport à une arborescence. Lorsqu'aucuneconfusion ne sera possible, nous écrirons T reconnaît F à la place de F estHorn élargie simple (Horn élargie, Horn étendue simple, Horn étendue)par rapport à T .Exemple : La clause f:x1; x3; x4;:x5;:x6;:x7;:x8g est Horn élargiesimple par rapport à l'arborescence T en Fig. 3.1.
neg(C)

pos(C)

x2

x3

x4

x6
x8

x1 x5r

x7Fig. 3.1 � Arborescence TExemple : La clause f:x1; x3; x4;:x5;:x6;:x7g est Horn étendue simplepar rapport à l'arborescence T en Fig. 3.2.On peut remarquer que toute formule Horn étendue est Horn élargieet que de même toute formule Horn étendue simple est Horn élargiesimple. 65

Chapitre 3. Les formules Horn étendues et élargies simples
neg(C)

pos(C)

x2

x3

x4

x6

x7

x8

x1 x5r

Fig. 3.2 � Arborescence T3.3 Satisfaisabilité et génération à délai po-lynômialComme les formules Horn élargies simples ne sont pas un sous-ensembledes formules Horn étendues, nous devons prouver le même type de ré-sultats que ceux obtenus au chapitre précédent. On va prouver que l'onpeut tester en temps linéaire la satisfaisabilité d'une formule Horn élargiesimple et qu'il est possible d'en générer toutes les solutions avec un délaiO(nN) en n'utilisant que la résolution unitaire.Proposition 40 Si F est une formule Horn élargie simple, alors pourtout U ensemble de clauses unitaires, Noyau(F [U) est Horn élargiesimple.Preuve : Soit T une arborescence reconnaissant F . Soit V l'ensemble desvariables de F et VN l'ensemble des variables de Noyau(F [U). Soit TNl'arborescence étiquetée par les variables de VN obtenue en supprimantde T tous les arcs étiquetés par les variables de V n VN et en fusionnantl'origine et l'extrémité de tels arcs. Soit X un ensemble de variables, siles variables de X étiquettent un chemin dans T , alors les variables deX \VN étiquettent un chemin dans TN . Si les variables de X étiquettentune arborescence dans T , alors les variables de X \ VN étiquettent unearborescence dans TN . Soit CN une clause de Noyau(F [U), il existeune clause C 2 F telle que CN = C \ VN (car U ne contient que desclauses unitaires). Comme C est Horn élargie simple par rapport à T ,on peut déduire que CN est Horn élargie simple par rapport à TN . DoncNoyau(F [U) est Horn étendue simple. 2Proposition 41 Si F est Horn élargie simple et F ne contient pas declause unitaire, alors F est satifaisable.Preuve : Soit T une arborescence reconnaissant F . Soit M1 = f:x j �!xa pour origine rg et M2 = fx j x 2 V;:x 62 M1g. On va prouver que66

3.4. AgrégatsM =M1 [M2 est un modèle de F . Soit C une clause de F (j C j� 2 carF ne contient pas de clause unitaire). C est Horn élargie simple par rap-port à T , donc Tpos(C) est un chemin et Tneg(C) est une arborescence dontla racine est r. Si j pos(C) j� 2 alors une au moins des deux variablesest valuée positivement (même dans le cas ou le chemin correspondantà pos(C) commence à la racine de T , un au moins de ces arcs n'a paspour origine r). C est donc satisfaite dans ce cas. Si j pos(C) j< 2, alorsj neg(C) j� 1 donc il existe y 2 neg(C) tel que �!y a pour origine r, doncC est satisfaite. 2On déduit des Prop. 40, 41 et du Corollaire 4 (Partie I, Chap. 2) quel'on peut générer avec un délai O(nN) tous les modèles d'une formuleHorn élargie simple.La classe Horn étendue simple est incluse dans la classe Horn élar-gie simple, il existe donc un algorithme linéaire permettant de tester siune telle formule est satisfaisable et il existe aussi un algorithme à délaiO(nN) donnant toutes les solutions d'une formule Horn étendue simple.3.4 AgrégatsNous présentons dans cette section, la notion d'agrégat. Cette notion,intrinsèque à toute formule, regroupe les variables en classes d'équiva-lences. Nous étudions les propriétés de ces classes d'équivalences pourles formules Horn élargies simples. Cette étude servira de base à laconstruction d'un algorithme de reconnaissance des formules Horn élar-gies simples. On peut remarquer en outre que comme toute formule Hornétendue simple est Horn élargie simple, ces propriétés sont aussi vraiespour les formules Horn étendues simples.Dé�nition 20 (Agrégat) Soit R la clôture transitive et ré�exive de larelation f(x; y) 2 V�V=9C 2 F telle que x; y 2 pos(C) et card(CNeg(x)) =card(CNeg(y))g. R est une relation d'équivalence sur les éléments de V ,et ses classes d'équivalences sont appelées les agrégats de F .Exemple : Soit F0 = fC1; C2; C3; C4; C5; C6; C7; C8g avecneg(C1) = fx1, x2, x3, x5, x6, x7, x8, x10, x13g, pos(C1) = fx11, x12g ;neg(C2) = fx1, x5, x6, x7, x8, x10, x13g, pos(C2) = fx4, x12g ;neg(C3) = fx1, x4, x5, x6, x7, x8, x9, x11, x12, x13g, pos(C3) = fx10g ;neg(C4) = fx1, x2, x3, x5, x6, x7, x8, x13g, pos(C4) = fx9; x12g ;neg(C5) = fx2, x3g, pos(C5) = fx1, x5g ;neg(C6) = fx2, x3g, pos(C6) = fx1, x8, x12, x13g ;neg(C7) = ;, pos(C7) = fx1, x7, x8, x10g ;neg(C8) = ; pos(C8) = fx1, x6g.Pour i = 1; 2; 3; 5; 6; 7; 8; 13, card(CNeg(xi)) = 4 ;card(CNeg(x10)) = 2, 67

Chapitre 3. Les formules Horn étendues et élargies simplesPour i = 4; 9; 11; 12, card(CNeg(xi)) = 1 ;Les agrégats de F0 sont : A1 = fx1; x5; x6; x7; x8; x13g, A2 = fx10g, A3 =fx4; x9; x11; x12g et A4 = fx2; x3g.Les trois propositions suivantes sont des conséquences directes desdé�nitions.Proposition 42 Supposons que F soit Horn élargie simple. Soient Tune arborescence reconnaissant F et x; y 2 V . Si �!x est le parent de �!ydans T , alors CNeg(y) � CNeg(x).Preuve : Soit P le chemin orienté de T qui commence à la racine deT et dont le dernier arc est �!y . Supposons que CNeg(y) 6= ;. SoitC 2 CNeg(y). Par dé�nition, tous les arcs de P sont étiquetés par deséléments de neg(C), donc x 2 neg(C) et C 2 CNeg(x). Si CNeg(y) = ;,le résultat est trivialement véri�é. 2Notation 1 On utilisera CNeg(A) pour décrire l'ensemble Sx2ACNeg(x).Proposition 43 Soit A un agrégat et x; y 2 A. Si F est Horn élargiesimple, alors CNeg(x) = CNeg(y) = CNeg(A).Preuve : Soit T une arborescence reconnaissant F . Supposons qu'il existeC 2 F telle que x; y 2 pos(C). Par dé�nition il existe un chemin orientéde T qui contient �!x et �!y . On déduit de la Prop. 42 que CNeg(x) �CNeg(y) ou CNeg(y) � CNeg(x). D'où CNeg(x) = CNeg(y) carcard(CNeg(x)) = card(CNeg(y)). Finalement, le résultat est obtenupar transitivité de l'égalité. 2Proposition 44 Supposons que F est Horn élargie simple. Soit T unearborescence reconnaissant F et A un agrégat.1. Pour toute clause C 2 F , TA\pos(C) est un chemin orienté de T (quipeut être vide).2. TA est un sous-graphe connexe de T (TA est une arborescence), etTA a un pied.Preuve :1. Soient x; y 2 A \ pos(C). On peut supposer que �!x est un ancêtrede �!y dans T puisque Tpos(C) est un chemin orienté. Soit �!z un arcappartenant au chemin orienté de T dont le premier arc est �!x etdont le dernier arc est �!y . Il est su�sant de montrer que z 2 A \pos(C). On a z 2 pos(C) car Tpos(C) est un chemin orienté. De plusCNeg(y) � CNeg(z) � CNeg(x) (Prop. 42) et card(CNeg(x)) =card(CNeg(y)), donc card(CNeg(z)) = card(CNeg(x)) et z 2 A.68

3.4. Agrégats2. Par dé�nition d'un agrégat, il existe une permutation (C1; : : : ; Ck)des éléments de fC 2 F=A \ pos(C) 6= ;g, telle que pour tout i(1 < i � k) il existe j (1 � j < i) tel que pos(Ci) \ pos(Cj) 6= ;.Pour tout i (1 � i � k) TA\pos(Ci) est un chemin orienté (Prop. 44(1)). Le résultat découle de ce que pour chaque U � V etW � V ,si TU est une arborescence avec un pied, TW est un chemin orienté,et U \W 6= ;, alors TU[W est une arborescence avec un pied.2 Supposons F Horn élargie simple, soient A et A0 deux agrégats et C 2F . On observe que siA\pos(C) 6= ;,A0\pos(C) 6= ; et card(CNeg(A)) =card(CNeg(A0)), alors A = A0.Dé�nition 21 (lAgrégats) Soit C 2 F . On dé�nit lAgregats(C) commela liste ordonnée des agrégats (A1; : : : ; An) telle que Ai\pos(C) 6= ; (1 �i � n), pos(C) � (A1[: : :[An) et card(CNeg(Ai)) > card(CNeg(Aj))(1 � i < j � n).Exemple : Pour la formule F0, lAgregats(C1) = (A3), lAgregats(C2) =(A3), lAgregats(C3) = (A2), lAgregats(C4) = (A3), lAgregats(C5) =(A1), lAgregats(C6) = (A1; A3), lAgregats(C7) = (A1; A2), lAgregats(C8) =(A1).Lemme 45 Supposons que F est Horn élargie simple. Soit T une arbo-rescence reconnaissant F . Soit C 2 F , et A, A0 deux agrégats tels que Aest le prédécesseur de A0 dans lAgregats(C). Soit �!x le premier arc duchemin orienté TA0\pos(C). Alors le dernier arc de TA\pos(C) est le parentde �!x dans T , et �!x = foot(TA0).Preuve : Soit q 2 A \ pos(C). L'arc �!q est un ancêtre de �!x puisqueTpos(C) est un chemin orienté et card(CNeg(q)) = card(CNeg(A)) >card(CNeg(A0)) = card(CNeg(x)) (Prop. 42). Soit �!p le parent de �!xdans T . On a deux possibilité, �!q = �!p ou �!q est un ancêtre de �!p . Ona p 2 pos(C) car Tpos(C) est un chemin orienté, et p 62 A0 car �!x estle premier arc de TA0\pos(C). La Prop. 42 nous donne card(CNeg(p)) >card(CNeg(x)). SoitA00 l'agrégat tel que p 2 A00. On a card(CNeg(A00)) >card(CNeg(A0)) et ensuite card(CNeg(A00)) � card(CNeg(A)) par dé�-nition de lAgregats(C). On a card(CNeg(q)) � card(CNeg(p)) (Prop. 42),et card(CNeg(A)) � card(CNeg(A00)). Donc card(CNeg(A)) = card(CNeg(A00)),A = A00 et p 2 A. Pour tout q 2 A \ pos(C), si p 6= q alors �!q est unancêtre de �!p , d'où �!p est le dernier arc de TA\pos(C). Le parent de �!xn'appartient pas à A0, donc �!x = foot(TA0). 2On montre maintenant que l'ensemble des agrégats d'une formuleHorn élargie simple a une structure de forêt. 69

Chapitre 3. Les formules Horn étendues et élargies simplesProposition 46 Soient A, A0 et A00 des agrégats, et C1, C2 deux clausesde F tels que A0 (resp. A00) est le prédécesseur de A dans lAgregats(C1)(resp. lAgregats(C2)). Si F est Horn élargie simple alors A0 = A00.Preuve : Soit T une arborescence reconnaissant F . Il existe des variablesx1; y1 2 pos(C1) telles que x1 2 A0, y1 2 A, et �!x1 est le parent de �!y1 dansT (Lemme 45). Il existe deux autres variables x2; y2 2 pos(C2) telles quex2 2 A00, y2 2 A, et �!x2 est le parent de �!y2 dans T (Lemme 45). TA est unsous graphe connexe de T (Prop. 44), d'où x1 = x2 et A0 = A00. 2Notation 2 Soit A un agrégat. On appelle PRED(A) l'ensemble fA0= 9 C 2 Ftel que A0 est le prédécesseur de A dans lAgregats(C)g.Remarque, si F est Horn élargie simple, alors pour tout agrégat A,card(PRED(A)) � 1 (Prop. 46).Exemple : PRED(A1) = ;, PRED(A2) = fA1g, PRED(A3) = fA1g,PRED(A4) = ;. La forêt associée est dessinée en Fig. 3.3.
A1

A2 A3

A4Fig. 3.3 � Forêt associée aux agrégats de F0Proposition 47 Supposons que F est Horn élargie simple. Si A et A0sont deux agrégats tels que PRED(A0) = fAg. Alors on a CNeg(A0) �CNeg(A).Preuve : Soit T une arborescence reconnaissant F . Soit C 2 F une clausetelle que A;A0 2 lAgregats(C). Il existe deux variables x; y 2 pos(C)telles que x 2 A, y 2 A0, et �!x est le parent de �!y dans l'arborescenceT (Lemme 45). On a CNeg(y) � CNeg(x) (Prop. 42), CNeg(A) =CNeg(x) et CNeg(A0) = CNeg(y) (Prop. 43), d'où CNeg(A0) � CNeg(A).2 Soit F = fC1; : : : ; Cmg et N = card(C1) + : : :+ card(Cm).Proposition 48 Les agrégats de F peuvent être calculés en temps O(N).Preuve :Dé�nissons dans un premier temps la procédure OrderPos (Fig. 3.4)qui calcule pour toute clause C, une liste ordonnée des élément de pos(C),notée ordPos(C), telle que pour tout couple de variables x; y 2 pos(C),x est placé avant y dans ordPos(C) si card(CNeg(x)) � card(CNeg(y)).70

3.5. Reconnaissance de formules Horn élargies simplesChaqueW [i] (1 � i � card(F)) représente l'ensemble fx 2 V= card(CNeg(x)) =ig. Les ensembles CNeg(x) et CPos(x) (x 2 V), donnés en entrée à laprocédure OrderPos peuvent être calculés à partir de F en temps O(N).Il est en outre facile de véri�er que la procédure Order Pos a une com-plexité linéaire.Soit G(F) le graphe dont l'ensemble des sommets est V (on rappelleque V est l'ensemble des variables de F) et dont l'ensemble des arcsest E = ffx; yg=card(CNeg(x)) = card(CNeg(y)), et il existe C 2 Ftel que x et y apparaisse consécutivement dans ordPos(C)g. Par dé�-nition, les agrégats de F sont des composantes connexes de G(F). Onpeut observer que card(E) � card(pos(C1)) + : : :+ card(pos(Cm)) avecF = fC1; : : : ; Cmg. Donc les agrégats peuvent être construits en tempslinéaire à l'aide d'un parcours du graphe (parcours en profondeur parexemple). 2Procédure OrderPosEntrée : Les ensembles CNeg(x) et CPos(x) (x 2 V) ;Sortie : Les listes ordPos(C)(C 2 F) ;débutpour tout C 2 F faireordPos(C) ; ;pour i = 1 jusqu'à card(F) faireW [i] ; ;pour tout x 2 V faireW [card(CNeg(x))] W [card(CNeg(x))][fxg ;pour i = 1 jusqu'à card(F)pour tout x 2 W [i] fairepour tout C 2 CPos(x) faireinsérer x au début de ordPos(C) ;�n Fig. 3.4 � Procédure OrderPos3.5 Reconnaissance de formules Horn élar-gies simplesDans cette section nous présentons un algorithme linéaire pour lareconnaissance des formules Horn élargies simples. On va voir que pourtoute formule F Horn élargie simple, on peut construire une arborescencereconnaissant F , en utilisant la forêt associée à ses agrégats que nousavons mise en évidence à la section précédente. 71

Chapitre 3. Les formules Horn étendues et élargies simplesProposition 49 Supposons que F est Horn élargie simple. Soit T unearborescence reconnaissant F et A un agrégat.1. Pour toute clause C 2 F , si A \ pos(C) 6= ; et si A n'est pasle premier élément de lAgregats(C), alors foot(TA) est le premierarc du chemin orienté TA\pos(C).2. Pour tout agrégat A0 tel que PRED(A0) = fAg et pour toute clauseC 2 F , si A et A0 appartiennent à lAgregats(C), alors le parentde foot(TA0) est le dernier arc de TA\pos(C).Preuve : Découle directement du Lemme 45. 2Proposition 50 Soit A un agrégat et T une arborescence étiquetée avecles éléments de A. Si pour toute clause C 2 F , TA\pos(C) est un cheminorienté de T , alors T a un pied.Preuve : La preuve est la même que celle de la proposition 44(2).Par dé�nition d'un agrégat, il existe une permutation (C1; : : : ; Ck) deséléments de fC 2 F=A\pos(C) 6= ;g, telle que pour tout i (1 < i � k) ilexiste j (1 � j < i) tel que pos(Ci)\pos(Cj) 6= ;. Pour tout i (1 � i � k)TA\pos(Ci) est un chemin orienté (Prop. 44 (1)). Le résultat découle de ceque pour chaque U � V etW � V , si TU est une arborescence avec unpied, TW est un chemin orienté, et U \W 6= ;, alors TU[W est une arbo-rescence avec un pied. 2Dé�nition 22 (Arborescence acceptable) Soient A un agrégat et Tune arborescence étiquetée avec les éléments de A, tels que pour touteclause C 2 F , TA\pos(C) est un chemin orienté. L'arborescence T estacceptable pour A si T satisfait les conditions suivantes1. Pour toute clause C 2 F , si A \ pos(C) 6= ; et A n'est pas lepremier élément de lAgregats(C) alors foot(T) est le premier arcde TA\pos(C).2. Pour tout agrégat A0 tel que PRED(A0) = fAg, il existe xA0 2A tel que pour toute clause C 2 F , si A et A0 appartiennent àlAgregats(C), alors �!xA0 est le dernier arc de TA\pos(C).L'arc �!xA0 sera appelé anchor(A0; T).Exemple : La �gure Fig. 3.5 représente une arborescence T acceptablepour l'agrégatA1 de la formuleF0. On a anchor(A2; T) = �!x7, et anchor(A3; T) =�!x13. On peut véri�er que pour chaque clause C 2 F0, A1 \ pos(C)est un chemin orienté de T (parfois vide) : A1 \ pos(C5) = fx1; x5g,72

3.5. Reconnaissance de formules Horn élargies simples
anchor(A2,T) anchor(A3,T)

foot(T)x1

x5

x8

x13

x6

x7

x1

x5

x8

x13

x6

x7Fig. 3.5 � T : Une arborescence acceptable pour A1A1 \ pos(C6) = fx1; x8; x13g, A1\ pos(C7) = fx1; x7; x8g, A1\ pos(C8) =fx1; x6g.Proposition 51 Si F est une formule Horn élargie simple, alors toutagrégat de F admet une arborescence acceptable.Preuve : Si F est Horn élargie simple par rapport à T , alors TA est unearborescence acceptable pour A (Prop. 49). 2Nous montrons maintenant comment on peut construire une arbo-rescence reconnaissant F en utilisant les arborescences acceptables et larelation PRED.Dé�nition 23 (R(t)) Pour tout agrégat A, soit t(A) un arborescenceacceptable pour A, et supposons card(PRED(A)) � 1. On dé�nit l'arbo-rescence R(t) comme ceci :1. L'ensemble des sommets de R(t) est V [frg, où r est la racine deR(t) et r 62 V .2. L'ensemble des arcs de R(t) est l'union des ensembles suivants :� f(r; x)= il existe un agrégat A tel que x 2 A;PRED(A) = ;et foot(t(A)) = �!x g� f(x; y)= il existe deux agrégats A et A0 tels que x 2 A; y 2A0; PRED(A0) = fAg; foot(t(A0)) = �!y et anchor(A0; t(A)) =�!x g� f(x; y)= il existe un agrégat A tel que x; y 2 A, et �!x est leparent de �!y dans t(A)g.3. Chaque arc (x; y) est étiqueté par y. 73

Chapitre 3. Les formules Horn étendues et élargies simples
anchor(A2,t(A1))

{2,3}

{10}

{1,5,6,7,8,13}

{4,9,11,12}

A1

A2 A3

A4

137

6

8

1

5

2

3

12

4
11

9

10

12

4
11

9

10

2

3

137

6

8

5

r

1
t(A3)

t(A2)

t(A4) t(A1)

anchor(A3,t(A1))

R(t)Fig. 3.6 � Construction de R(t)Exemple : La �gure 3.6 représente la construction d'une arborescenceR(t) pour F0.Proposition 52 Supposons que tout agrégat A satisfasse les conditionssuivantes :1. 8x; y 2 A;CNeg(x) = CNeg(y) ;2. card(PRED(A)) � 1 ;3. Il existe une arborescence t(A) pour A ;4. Pour tout agrégat A0 tel que PRED(A0) = fAg, CNeg(A0) �CNeg(A).Alors F est Horn élargie simple par rapport à R(t).Preuve : Soit T = R(t). Dans un premier temps on prouve que pourtoute clause C 2 F , Tneg(C) est une arborescence dont la racine estla racine de T . Il est su�sant de prouver que pour tous x; y 2 V ,si �!x est un ancêtre de �!y dans T , alors CNeg(y) � CNeg(x). Parconstruction de T il existe une séquence d'agrégats A1; : : : ; Ak telle quex 2 A1; y 2 Ak et PRED(Ai) = fAi�1g (pour 1 < i � k). La condi-tion 4 nous donne CNeg(Ak) � CNeg(A1), et la condition 1 impliqueCNeg(Ak) = CNeg(y) et CNeg(A1) = CNeg(x). Donc CNeg(y) �CNeg(x). Maintenant on prouve que pour toute clause C 2 F , Tpos(C)74

3.5. Reconnaissance de formules Horn élargies simplesest un chemin orienté de T . Soit lAgregats(C) = (A1; : : : ; Ak). Parhypothèse TAi\pos(C) est un chemin orienté de t(Ai) (1 � i � k) etpar construction de T , Tpos(C) est la concaténation des chemins orien-tés TA1\pos(C); : : : ; TAk\pos(C). 2L'algorithme Horn Élargie Simple détermine si une formule F estHorn élargie simple. Si c'est le cas, l'algorithme retourne une arborescencereconnaissant F , sinon l'algorithme retourne faux. Sa correction vient despropositions 43, 46, 47, 51 et 52.Algorithme Horn Élargie SimpleEntrée : Une formule F .Sortie : Un arborescence reconnaissant F si F est Horn élargie simple,faux sinon.1. Construire les agrégats de F . Si un agrégat contient deux variablesx et y telles que CNeg(x) 6= CNeg(y) alors retourner faux (Prop. 43).2. S'il existe A tel que card(PRED(A)) > 1, alors retourner faux(Prop. 46).3. S'il existe un agrégat n'ayant pas d'arborescence acceptable, alorsretourner faux. (Prop. 51) ; sinon, construire une arborescence t(A)pour tout agrégat A.4. Pour tout agrégat A, s'il existe A0 tel que PRED(A0) = fAg etCNeg(A0) 6� CNeg(A), alors retourner faux (Prop. 47).5. Construire R(t) ; retourner R(t) (Prop. 52).Proposition 53 l'algorithme Horn Élargie Simple est de complexité li-néaire.Preuve :Rappelons que F = fC1; : : : ; Cmg, et N = card(C1) + : : : +card(Cm). La Prop. 48 implique que l'on peut calculer en temps li-néaire les agrégats de F . Pour tout agrégat A = fx1; : : : ; xkg, il estpossible de tester en temps O(card(CNeg(x1)) + : : :+ card(CNeg(xk)))si CNeg(x1) = : : : = CNeg(xk), en utilisant un tableau indexé par lesclauses. Donc, le premier pas de l'algorithme s'exécute en temps linéairecar Px2V card(CNeg(x)) � N . Les ensembles PRED(A) peuvent êtrecalculés en temps linéaire à partir des listes ordPos(C) (C 2 F) cal-culées dans la preuve de la Prop. 48. Le second pas de l'algorithme estdonc aussi de complexité linéaire. Pour tout agrégat A, soit SUC(A) =fA0=PRED(A0) = fAgg. Soit A un agrégat, SUC(A) = fA1; : : : ; Akg,et x0 2 A, x1 2 A1, : : :, xk 2 Ak. On peut tester si CNeg(x1) �CNeg(x0), : : :, CNeg(xk) � CNeg(x0) en temps O(card(CNeg(x0)) +: : :+card(CNeg(xk))). La complexité du quatrième pas de cet algorithme75

Chapitre 3. Les formules Horn étendues et élargies simplesest donc O(N). Nous montrons à la section suivante que les arborescencesacceptables peuvent être calculées en temps linéaires. Une fois ces arbo-rescences calculées, il est facile de construire R(t) en temps linéaire. Lacomplexité totale de cet algorithme est donc O(N). 23.6 Calcul des arborescences acceptablesSoit A un agrégat et fB1; : : : ; Bkg = fA \ pos(C)=9C 2 F;A \pos(C) 6= ;g. Nous devons construire, si possible, une arborescence Tdont les arcs sont étiquetés (de manière unique) par les éléments de A ettel que pour tout i (1 � i � k), TBi est un chemin orienté. C'est exacte-ment le problème que Swaminathan et Wagner ont appelé problème deréalisation arborescente [46].Dé�nition 24 (Réalisation arborescente) Soient S = fS1; : : : ; Skgune collection d'ensembles �nis et T une arborescence dont les arcs sontétiquetés (de manière unique) par les éléments de S1[: : :[Sk. T est uneréalisation arborescente de S si TSi est un chemin orienté de T (1 � i �k).Exemple : Soit S 0 = ff1; 3; 5g, f1; 3; 6g, f3; 5g, f1; 2g, f3; 4gg. L'arbo-rescence T (Fig. 3.7) est une réalisation arborescente de S 0.
45 6

3 2

1Fig. 3.7 � T est une réalisation arborescente de S 0Soit S = fS1; : : : ; Skg une collection d'ensembles �nis. On appelleG(S) le graphe dont l'ensemble des sommets est S, et l'ensemble desarêtes est ffSi; Sjg=Si \ Sj 6= ;; i 6= jg. On remarque que si G(S) estconnexe alors tout réalisation arborescente de S a un pied.Soit A un agrégat et A = fB1; : : : ; Bkg = fA \ pos(C)=9C 2 F;A \pos(C) 6= ;g. Par dé�nition d'un agrégat, G(A) est connexe. La condition1 de la dé�nition d'une arborescence acceptable T pour A (Déf. 22), exigeque des chemins orientés TBi aient comme origine la racine de T . Lacondition 2 demande que certains chemins orientés aient le même dernierarc.76

3.6. Calcul des arborescences acceptablesLemme 54 Soit S = fS1; : : : ; Skg une collection d'ensembles �nis telleque G(S) est connexe. Soit X = fb; e1; : : : ; ek; f1; : : : ; fkg tel que X\(S1[: : : [Sk) = ;, et I � f1; : : : ; kg. Il existe une réalisation arborescente Tde S, telle que pour chaque i 2 I, TSi commence à la racine de T , siet seulement si il existe une réalisation arborescente de S [Si2IfSi [fbg; Si [fb; eig; Si [fb; fig; Si [feig; Si [ffigg.Preuve :()) Soit T une réalisation arborescente telle que pour tout i 2 I, Sicommence à la racine de T . Soit T 0 l'arborescence obtenue à partir deT en ajoutant les arcs suivant : �!b est le pied de T 0, son extrémité estla racine de T . Les arcs �!ei et �!fi sont rajoutés, pour tout i 2 I commeles enfants du dernier arc de TSi. Il est trivial de véri�er que dans un telarbre les contraintes rajoutées dans le lemme ci-dessus sont véri�ées.(() Soit T 0 une réalisation arborescente des contraintes données ci-dessus. Soit T la forêt obtenue en retirant de T 0 les arcs �!ei �!fi (pour touti 2 I) et �!b . Comme G(S) est connexe, T 0(S1[S2[:::[Sk) est aussi connexe,donc T est une arborescence. Soit j un élément quelconque de I, T 0Sj estun chemin car on a la contrainte Sj. Comme nous avons la contrainteSj [b, l'arc �!b forme un chemin avec T 0Sj . Comme on a les contraintes,Sj [fejg et Sj [fej; bg, on voit que T 0Sj[fej;bg est un chemin dont �!b et�!ej sont les deux extrémités. Il en est de même pour fj. On voit que laseule solution est que l'arc �!b soit parent du premier arc de T 0Sj et �!ejainsi que �!fj sont des enfants du dernier arc de T 0Sj . Comme T 0(S1[S2[:::[Sk)est connexe, on a obligatoirement que �!b est le parent de la racine deT 0(S1[S2[:::[Sk), ce qui implique que pour tout i 2 I, TSi commence à laracine de T . 2On voit que si T 0 est une réalisation arborescente de S [Si2IfSi [fbg; Si [fb; eig; Si [fb; fig; Si [feig; Si[ffigg, alors le graphe orienté Tobtenu en retirant de T 0 les arcs �!b , �!ei et �!fi (i 2 I), est une réalisationarborescente de S telle que pour tout i 2 I, TSi commence à la racine deT . Le pied de T est l'arc (unique) de T 0 dont le parent est �!b .Lemme 55 Soit S = fS1; : : : ; Skg une collection d'ensembles �nis telleque G(S) est connexe. Soit X = fg; hg tel que X \ (S1 [: : :[Sk) = ;, etI � f1; : : : ; kg. Il existe une réalisation arborescente T de S telle que leschemins orientés TSi (i 2 I) ont tous le même dernier arc, si et seulements'il existe une réalisation arborescente de S [Si2IfSi [fgg; Si [fhgg.Preuve : Soit T 0 une réalisation arborescente de S [Si2IfSi [fgg; Si [fhgg. Le graphe orienté T obtenu en retirant de T 0 les arcs �!g et �!h estune réalisation arborescente de S telle que tous les chemins orientés deTSi (i 2 I) partagent le même dernier arc. On remarque en outre qu'au77

Chapitre 3. Les formules Horn étendues et élargies simplesmoins un des arcs �!g ou �!h a son parent dans T 0, et que s'ils ont tous lesdeux un parent, alors c'est le même pour les deux. Supposons que �!g aitun parent �!x dans T 0. Alors �!x est le dernier arc du chemin orienté TSi(i 2 I). 2On utilise les résultats des Lemmes 54 et 55 pour construire nos arbo-rescences acceptables. On associe à chaque clause C 2 F deux nouveauxsymboles ec et fc (ec 62 V , fc 62 V), et à chaque agrégat A les symbolesnouveaux gA et hA (gA 62 V , hA 62 V). La dé�nition suivante utilise enoutre le symbole b (b 62 V).Dé�nition 25 (contraintes(A)) Soient A un agrégat et C 2 F uneclause tels que A \ pos(C) 6= ;. On dé�nit les ensembles D(C), E(C),F(C) et G(C) comme ceci :� D(C) = fA \ pos(C)g ;� Si A n'est pas le premier élément de lAgregats(C), alorsE(C) = f(A\pos(C))[fbg, (A\pos(C))[fb; eCg, (A\pos(C))[fb; fCg, (A\pos(C))[feCg, (A\pos(C))[ffCgg, sinon E(C) = ; ;� Si A a un successeur A0 dans lAgregats(C), alorsF(C) = f(A\pos(C))[fgA0g, (A\pos(C))[fhA0gg, sinon F(C) =; ;� G(C) = D(C) [E(C) [F(C).Soit contraintes(A) = G(C1) [: : : [G(Ck) où fC1; : : : ; Ckg = fC 2F=A \ pos(C) 6= ;g.On remarque que si CNeg(A) = ; alors F(Ci) = ; (1 � i � k)puisque, par dé�nition de lAgretgats(Ci), A n'a pas de successeur danslAgregats(Ci).Proposition 56 Soit A un agrégat. Il existe une arborescence accep-table pour A si et seulement s'il existe une réalisation arborescente decontraintes(A).Preuve : Conséquence des Lemmes 54 et 55. 2Soit T 0 une réalisation arborescente de contraintes(A). Le grapheorienté T obtenu en enlevant les arcs �!b , �!eC et �!fC (C 2 F), �!gA0 et �!hA0(pour tout agrégat A0), de T 0 est une arborescence acceptable pour A. Lepied de T est le seul arc de T 0 dont le parent est �!b . Soit A0 un agrégat telque PRED(A0) = fAg. On peut supposer que �!gA0 a un parent �!x dansT 0. Alors anchor(A0; T) = �!x .78

3.6. Calcul des arborescences acceptablesProcédure Construit ContraintesEntrée : Les agrégats de F et les listes ordPosAg(C) (C 2 F) ;Sortie : Les ensembles contraintes(A) ;débutpour tout agrégat A fairecontraintes(A) ; ;pour toute clause C 2 F telle que pos(C) 6= ; fairedébutSoit (A1 \ pos(C); : : : ; Ak \ pos(C)) = ordPosAg(C) ;pour i = 1 jusqu'à k fairecontraintes(Ai) contraintes(Ai) [(Ai \ pos(C)) ;pour i = 2 jusqu'à k fairecontraintes(Ai) contraintes(Ai) [f(Ai \ pos(C)) [fbg; (Ai \ pos(C)) [fb; eCg;(Ai \ pos(C)) [fb; fCg; (Ai \ pos(C)) [feCg; (Ai \ pos(C)) [ffCgg ;pour i = 1 jusqu'à k � 1 fairecontraintes(Ai) contraintes(Ai) [f(Ai \ pos(C)) [fgAi+1g,(Ai \ pos(C)) [fhAi+1gg ;�n�n. Fig. 3.8 � Procédure Construit ContraintesSwaminathan et Wagner présentent [46] un algorithme qui détermine,si pour un ensemble S = fS1; : : : ; Skg, il existe une réalisation arbores-cente de S et, s'il en existe une la construit. Leur algorithme est de com-plexité quasi-linéaire. Plus précisément sa complexité est O(n:�(n; r)),où n = card(S1) + : : :+ card(Sk), r = card(S1 [: : : [Sk) et �(n; r) estl'inverse fonctionnel de la fonction d'Ackermann. Swaminathan et Wag-ner ont aussi remarqué que le problème de réalisation arborescente peutse résoudre en temps linéaire en utilisant les résultats de Dietz et al. [21].On rappelle que F = fC1; : : : ; Cmg et N = card(C1)+: : :+card(Cm).Proposition 57 Les arborescences acceptables de F peuvent se calculeren temps O(N).Preuve : Soit A un agrégat, contraintes(A) = fE1; : : : ; Ehg et NA =card(E1) + : : : + card(Eh). Par dé�nition de contraintes(A), PNA estO(N). SoitC 2 F et (A1; : : : ; Ak) = lAgregats(C). On note ordPosAg(C)la liste (A1 \ pos(C); : : : ; Ak \ pos(C)). Les listes ordPosAg(C) (C 2 F)peuvent être obtenues en temps linéaire à partir des listes ordPos(C)dé�nies dans la preuve de la Prop. 48. Les listes ordPosAg(C) (C 2 F)sont données en entrées de la procédure Construit-Contraintes (Fig. 3.8)qui calcule les ensembles contraintes(A). Il est aisé de véri�er que lacomplexité de la procédure Construit Contraintes est O(N). Une arbo-rescence acceptable pour un agrégat A peut être calculée en tempsO(NA)79

Chapitre 3. Les formules Horn étendues et élargies simplesen utilisant l'algorithme de Dietz et al. [21]. Le résultat découle de ce quePNA soit O(N). 23.7 Reconnaissance des formules Horn éten-dues simplesNous présentons ici un algorithme linéaire pour la reconnaissance desformules Horn étendues simples. Nous verrons que si toute variable appa-raît négativement dans F , alors il n'est pas nécessaire de savoir résoudre leproblème réalisation arborescente, pour décider si une formule est Hornétendue simple. La classe des formules Horn étendues simples est unesous-classe des formules Horn élargies simples, donc toutes les propriétésdécrites dans les sections précédentes sont toujours vraies. Soit une clauseC 2 F et T une arborescence telles que C soit Horn élargie simple parrapport à T . Par dé�nition Tneg(C) est une arborescence dont la racineest la racine de T , ce qui correspond à la dé�nition d'une clause Hornélargie simple par rapport à T . La clause C est Horn étendue simple, sien plus Tneg(C) est une union disjointe par arcs de chemins orientés de T .Examinons les conséquences de cette exigence supplémentaire.Proposition 58 Supposons que F est Horn étendue simple. Soient Tune arborescence reconnaissant F et x; y; z 2 V (y 6= z). Si �!x est leparent de �!y et �!z , alors CNeg(y) \ CNeg(z) = ;.Preuve : Supposons que CNeg(y)\CNeg(z) 6= ; et soit C 2 CNeg(y)\CNeg(z). Par dé�nition neg(C) = N1 [: : : [Nk, avec Ni \ Nj = ;(1 � i < j � k), et TNi est un chemin orienté qui commence à la racinede T (1 � i � k). Nous avons y; z 2 neg(C). Il existe i (1 � i � k) telque y 2 Ni. Par hypothèse �!z ne peut pas être un arc de TNi. Donc ilexiste un j (i 6= j) (1 � j � k) tel que z 2 Nj. Par hypothèse �!x est leparent de �!y et �!z , d'où �!x est un arc de TNi et TNj , et donc x 2 Ni\Nj.Contradiction. 2Proposition 59 Supposons que F est Horn étendue simple. Soient Tune arborescence reconnaissant F , et A un agrégat. Si CNeg(A) 6= ;alors TA est un chemin orienté de T .Preuve : Supposons qu'il existe x; y; z 2 A (y 6= z), tels que �!x est le pa-rent de �!y et �!z dans TA. Nous avons CNeg(y) = CNeg(z) = CNeg(A)(Prop. 43), et CNeg(y) \ CNeg(z) = ; (Prop. 58), d'où CNeg(A) = ;.Contradiction. 280

3.7. Reconnaissance des formules Horn étendues simplesProposition 60 Supposons que F est Horn étendue simple. Soit T unearborescence reconnaissant F et A un agrégat tel que CNeg(A) 6= ;. Pourtout agrégat A0 tel que PRED(A0) = fAg et CNeg(A0) 6= ;, le parent defoot(TA0) est le dernier arc de TA.Preuve : Le lemme 45 implique que le parent de foot(TA0) est dans TA.Soient �!z = foot(TA0) et �!x le parent de �!z . Supposons que �!x n'est pasle dernier arc de TA. Soit y 2 A tel que �!x est le parent de �!y . On aCNeg(y) \ CNeg(z) = ; (Prop. 58), d'où CNeg(A) \ CNeg(A0) = ;.Mais CNeg(A0) 6= ; et CNeg(A0) � CNeg(A) (Prop. 47). Contradiction.2 Nous dé�nissons maintenant les arborescences viables qui jouent pourles formules Horn étendues simples le même rôle que les arborescencesacceptables pour les formules Horn élargies simples.Dé�nition 26 (Arborescence viable) Soient A un agrégat, et T unearborescence acceptable pour A. T est viable si T satisfait les conditionssuivantes lorsque CNeg(A) 6= ; :1. T est un chemin orienté.2. Pour tout agrégat A0 tel que PRED(A0) = fAg et CNeg(A0) 6= ;,anchor(A0; T) est le dernier arc de T .Proposition 61 Si F est Horn étendue simple, alors tout agrégat de Fadmet une arborescence viable.Preuve : Conséquence directe des propositions : Prop. 51, Prop. 59 etProp. 60. 2Proposition 62 Supposons que F est Horn étendue simple. Soient A, A0et A00 trois agrégats (A0 6= A00) tels que PRED(A0) = PRED(A00) = fAg.Alors CNeg(A0) \ CNeg(A00) = ;Preuve : Supposons que CNeg(A0) 6= ; et CNeg(A00) 6= ;. Nous avonsCNeg(A) 6= ;, car PRED(A0) = fAg. Soit �!x le dernier arc du che-min orienté TA. Soit �!y = foot(TA0). La Prop. 60 implique que �!x estle parent de �!y et �!z , donc CNeg(y) \ CNeg(z) = ; (Prop. 58) etCNeg(A0) \ CNeg(A00) = ;. 2Proposition 63 Supposons que tout agrégat A satisfait les conditionssuivantes :1. 8x; y 2 A;CNeg(x) = CNeg(y) ; 81

Chapitre 3. Les formules Horn étendues et élargies simples2. card(PRED(A)) � 1 ;3. Il existe une arborescence viable t(A) pour A ;4. Pour tout agrégat A0 tel que PRED(A0) = fAg, CNeg(A0) �CNeg(A).5. Pour tous agrégats A0 et A00 tels que PRED(A0) = PRED(A00) =fAg, CNeg(A0) \ CNeg(A00) = ;.Alors F est Horn étendue simple par rapport à R(t).Preuve : Soit T = R(t). La Prop. 52 nous donne que F est Horn élargiesimple par rapport à T . Soient x; y; z 2 V (y 6= z), tels que�!x est le parentde �!y et �!z dans T . Il su�t de montrer que CNeg(y) \ CNeg(z) = ;.Soient A, A0 et A00 trois agrégats tels que x 2 A, y 2 A0 et z 2 A00. Nousavons deux cas à considérer :1. A0 = A00. L'arborescence t(A0) a un pied, donc x 2 A0 et A =A0 = A00. L'arborescence TA = t(A) n'est pas un chemin orienté etdonc CNeg(A) = ;, puisque par hypothèse t(A) est viable. D'oùCNeg(y) = CNeg(z) = CNeg(A) = ;.2. A0 6= A00. Supposons que CNeg(A0) 6= ; et CNeg(A00) 6= ;. Les ar-borescences t(A0) et t(A00) sont des chemins orientés. Si x 2 A0, alorspar construction de T PRED(A00) = fA0g et�!x = anchor(A00; t(A0)) ;de plus �!x est le dernier arc de t(A0) donc t(A0) est viable. Ce quicontredit le fait que�!x est le parent de�!y , donc x 62 A0. De même onpeut voir que x 62 A00. Par conséquent PRED(A0) = PRED(A00) =fAg par construction de T . Le résultat est une conséquence de lacondition 5.2 L'algorithme Horn Étendue Simple détermine si un formule F estHorn étendue simple. Si F est Horn étendue simple, l'algorithme retourneune arborescence reconnaissant F , sinon il retourne faux. La correctionde cet algorithme vient des propositions 43, 46, 47, 61, 62 et 63.Algorithme Horn Étendue SimpleEntrée : Une formule F .Sortie : Une arborescence T telle que F est Horn étenduesimple par rapport à T si F est Horn étendue simple.faux sinon.1. Construire les agrégats de F. Si un agrégat contient deux variables xet y telles queCNeg(x) 6= CNeg(y) alors retourner faux (Prop. 43).82

3.8. Un cas facile2. S'il existe un agrégat A tel que card(PRED(A)) > 1, alors retour-ner faux (Prop. 46).3. S'il existe un agrégat n'ayant pas d'arborescence viable, alors re-tourner faux (Prop. 61) ; sinon construire une arborescence viablet(A) pour tout agrégat A.4. Pour tout agrégat A, s'il existe un agrégat A0 tel que PRED(A0) =fAg et CNeg(A0) 6� CNeg(A), alors retourner faux (Prop. 47).5. Pour tout agrégat A, s'il existe A0 et A00 tels que PRED(A0) =PRED(A00) = fAg et CNeg(A0) \ CNeg(A00) 6= ;, alors retournerfaux (Prop. 62).6. Construire R(t) ; retourner R(t) (Prop. 63).Proposition 64 L'algorithme Horn Étendue Simple a une complexitélinéaire.Preuve : Nous avons prouvé dans la Prop. 53 que les étapes 1,2 et 4 sefont en tempsO(N). Pour tout agrégat A, soit SUC(A) = fA0=PRED(A0) =fAgg. Soit A un agrégat, SUC(A) = fA1; : : : ; Akg, et x1 2 A1, : : :, xk 2Ak. Nous pouvons tester si CNeg(Ai) \ CNeg(Aj) = ; (1 � i < j � k)en temps O(card(CNeg(x1)) + : : : + card(CNeg(xk))), en utilisant untableau indexé par les clauses. Donc la complexité de la cinquième étapeest O(N). Nous prouvons dans la Sec. 3.9 que les arborescences viablespeuvent être calculées en temps linéaire. Donc, la complexité totale del'algorithme est O(N). 2Dans la section suivante (Sec. 3.8) nous présentons un algorithmesimple pour calculer les arborescences viables lorsque toute variable a aumoins une occurrence négative dans F . Dans celle d'après (Sec. 3.9) nousétudions le calcul des arborescences viables dans le cas général.3.8 Un cas facileDans cette section nous supposons que toute variable apparaît négati-vement dans F , c'est à dire que pour tout x 2 V ,CNeg(x) 6= ;. Pour toutagrégat A, CNeg(A) 6= ;, donc, par dé�nition, les arborescences viablessont des chemins orientés. SoientA un agrégat, T une arborescence viablepour A (T est un chemin orienté), et � une permutation des éléments deA associée à T (x est le ième élément de � si �!x est le ième arc de T). SoitC 2 F tel que A\ pos(C) 6= ; et soit B = A\ pos(C). Par dé�nition, leséléments de B apparaissent consécutivement dans �. De plus s'il existeA0 (resp. A0) tel que PRED(A) = fA0g (resp. PRED(A0) = fAg) et83

Chapitre 3. Les formules Horn étendues et élargies simplesA0\pos(C) 6= ; (resp.A0\pos(C) 6= ;) alors le premier (resp. dernier) élé-ment de � appartient à B. On peut voir que par hypothèse CNeg(A0) 6= ;et donc la condition 2 de la Déf. 26 doit être satisfaite. Trouver une ar-borescence viable se réduit donc à trouver une permutation des élémentsde A qui satisfasse les contraintes énoncées à la section précédente.Dé�nition 27 (Permutation permise) Soit E = fE1; : : : ; Ekg unecollection d'ensembles �nis et U = E1 [: : :[Ek. Une permutation � deséléments de U est permise respectivement à E, si pour tout i (1 � i � k)les éléments de Ei apparaissent consécutivement dans �.Exemple : Soit U = fA;B;C;D;E;Fg et E = ffA;C;Fg, fB;C;D;Fg,fB;Egg. Les permutations permises de U respectivement à E sont : (A;C;F;D;B;E),(A;F;C;D;B;E), (E;B;D;F;C;A) et (E;B;D;C;F;A).Remarque 2 Si (x1; : : : ; xn) est une permutation permise de U respec-tivement à E, alors (xn; : : : ; x1) est aussi une permutation permise de Urespectivement à E.Lemme 65 Soit E = fE1; : : : ; Ekg une collection d'ensembles �nis, U =E1 [: : : [Ek, X = fb; eg telle que X \ U = ;, I � f1; : : : ; kg etJ � f1; : : : ; kg. Il existe une permutation permise � des éléments deU respectivement à E, telle que pour tout i 2 I le premier élément de �appartient à Ei, et pour tout j 2 J le dernier élément de � appartient àEj , si et seulement s'il existe une permutation permise des éléments deU [fb; eg respectivement à E [fU [fbg; U [fegg [(Si2IfEi [fbgg) [(Sj2JfEj [fegg).Preuve :) Soit � une permutation permise des éléments de U res-pectivement à E, telle que pour tout i 2 I, le premier élément de �appartient à Ei, et pour tout j 2 J , le dernier élément de � appartientà Ej , dans ce cas, la permutation �0 = (b; �1; : : : ; �k; e) (où �i désigne leiime élément de �), véri�e bien les contraintes de E. Elle véri�e aussi lacontrainte U [fbg car e est à une extrémité de �0, il en est de même pourla contrainte U [feg. Comme pour tout i 2 I, �1 2 Ei, il est évident quela contrainte Ei [fbg est satisfaite, pour tout i 2 I, dans �0. Il en est demême pour les contraintes Ej [feg, pour j 2 J .(Soit �0 une permutation permise de U [fb; eg respectivement à E [fU [fbg; U [fegg[(Si2IfEi [fbgg)[(Sj2JfEj [fegg). La contrainteU [b oblige e à être à une des extrémités de �0, la contrainte U [fegoblige b à être à l'autre extrémité de �0. On peut donc supposer que b estle premier élément de �0 et que e en est le dernier (si ce n'est pas le cas,on peut inverser l'ordre des éléments de �0). Comme on a les contraintesEi [fbg pour tout i 2 I, on sait que dans �0, les Ei (i 2 I) contiennenttous le second élément de �0 (puisqu'ils sont consécutifs à b). De même84

3.9. Calcul des arborescences viablesles Ej (j 2 J) contiennent tous l'avant-dernier élément de �0. On obtientdonc facilement une permutation permise de U respectivement à E enretirant à �0 les éléments b et e. 2Nous utilisons maintenant le Lemme 65 pour exprimer les conditionsqu'une arborescence viable doit véri�er. La dé�nition suivante utilise lessymboles b et e (b 62 V et e 62 V).Dé�nition 28 (contraintes1(A)) Soit A un agrégat. L'ensemble contraintes1(A)est dé�nie comme l'union des ensembles suivants :� fA [fbg; A [fegg ;� fA \ pos(C)=C 2 Fg ;� f(A \ pos(C)) [fbg =C 2 F et A n'est pas le premier élément delAgregats(C)g ;� f(A \ pos(C)) [feg =C 2 F et A n'est pas le dernier élément delAgregats(C)g.Proposition 66 Supposons que pour tout x 2 V , CNeg(x) 6= ;. Soit Aun agrégat. Il existe une arborescence viable pour A si et seulement s'ilexiste une permutation permise de A[fb; eg respectivement à contraintes1(A).Preuve : Le résultat découle du Lemme 65. 2Soit A un agrégat et � une permutation permise de A[fb; eg respecti-vement à contraintes1(A). Supposons que � est de la forme (b; x1; : : : ; xk; e).On associe à � un chemin orienté de T étiqueté par les éléments de Aet tel que �!xi est le parent de ��!xi+1 (1 � i < k). T est une arbores-cence viable pour A, et pour tout agrégat A0 tel que PRED(A0) = fAg,anchor(A0; T) = �!xk.Les ensembles contraintes1(A) sont calculés par la procédure ConstruitContraintes 1 (Fig. 3.9). Les listes ordPosAg(C) (C 2 F) données en en-trée à Construit Contraintes 1 sont dé�nies dans la preuve de la Prop. 57.Une permutation permise de A[fb; eg respectivement à contraintes1(A)peut être trouvée en temps linéaire en utilisant l'algorithme de Boothet Lueker [5] ou l'algorithme de Habib et al. [28, 29]. On peut doncconstruire les arborescences viables de F en temps O(N) (la preuve estla même que celle de la Prop. 57).3.9 Calcul des arborescences viablesOn peut adapter la méthode présentée à la section 3.6 pour le calculdes arborescences acceptables. Nous n'avons qu'à changer la dé�nition85

Chapitre 3. Les formules Horn étendues et élargies simplesProcédure Construit Contraintes 1Entrée : Les agrégats de F et les listes ordPosAg(C) (C 2 F) ;Sortie : Les ensembles contraintes1(A) ;débutpour tout agrégat A fairecontraintes1(A) fA [fbg; A [fegg ;pour toute clause C 2 F telle que pos(C) 6= ; fairedébutSoit (A1 \ pos(C); : : : ; Ak \ pos(C)) = ordPosAg(C) ;pour i = 1 jusqu'à k fairecontraintes1(Ai) contraintes1(Ai) [(Ai \ pos(C)) ;pour i = 2 jusqu'à k fairecontraintes1(Ai) contraintes1(Ai) [f(Ai \ pos(C)) [fbgg ;pour i = 1 jusqu'à k � 1 fairecontraintes1(Ai) contraintes1(Ai) [f(Ai \ pos(C)) [fegg ;�n�n. Fig. 3.9 � Procédure Construit Contraintes 1des ensembles contraintes(A) pour tenir compte des conditions supplé-mentaires induites par la dé�nition 26. Nous devons séparer deux cas :CNeg(A) = ; et CNeg(A) 6= ;. Si CNeg(A) 6= ; alors tout arborescenceviable pour A est un chemin orienté donc nous ajoutons à contraintes(A)les ensembles A;A [fbg; A [fb; eg; A [fb; fg; A [feg et A [ffg. Onrappelle que fe; bg \ V = ;. La dé�nition de contraintes2(A) utilise lenouveau symbole f (f 62 V).Dé�nition 29 (contraintes2(A)) Soient un agrégat A et une clauseC 2 F tels que A \ pos(C) 6= ;. On dé�nit les ensembles D(C), E(C),F(C) et G(C) :� D(C) = fA \ pos(C)g.� Si A n'est pas le premier élément de lAgregats(C), alorsE(C) = f(A\pos(C))[fbg, (A\pos(C))[fb; eCg, (A\pos(C))[fb; fCg, (A\pos(C))[feCg, (A\pos(C))[ffCgg, sinon E(C) = ;.� Si A est le dernier élément de lAgregats(C) alors F(C) = ;, sinonsoit A0 le successeur de A dans lAgregats(C) ;Si CNeg(A0) = ;, alors F(C) = f(A \ pos(C)) [fgA0g, (A \pos(C)) [fhA0gg ;Si CNeg(A0) 6= ;, alors F(C) = f(A \ pos(C)) [fegg.� G(C) = D(C) [E(C) [F(C).86

3.9. Calcul des arborescences viablesSoit fC1; : : : ; Ckg = fC 2 F=A \ pos(C) 6= ;g et B = fA;A [fbg; A [fb; eg; A [fb; fg; A [feg; A [ffgg.Si CNeg(A) 6= ;, alors contraintes2(A) = B [G(C1) [: : : [G(Ck) ;Si CNeg(A) = ;, alors contraintes2(A) = G(C1) [: : : [G(Ck).Proposition 67 Soit A un agrégat. Il existe une arborescence viable pourA si et seulement si il existe une réalisation arborescente de contraintes2(A).Preuve : Se déduit des Lemme 54 et Lemme 55. 2Soit T 0 une réalisation arborescente de contraintes2(A). Le grapheorienté T obtenu à partir de T 0 en retirant les arcs �!b , �!e , �!f , �!eC et �!fC(C 2 F), �!gA0 et �!hA0 (pour tout agrégat A0), est une arborescence viablepour A. Si CNeg(A) 6= ; alors T est un chemin orienté, et le parent de�!e dans T 0 est le dernier arc de T . Donc, pour tout agrégat A0 tel quePRED(A0) = fAg et CNeg(A0) 6= ;, anchor(A0; T) est le parent de �!edans T 0.Proposition 68 Les arborescences viables de F peuvent être calculéesen temps O(N).Preuve : Cette preuve est similaire à la preuve de la Prop. 57. 2

87

Chapitre 3. Les formules Horn étendues et élargies simples

88

Chapitre 4ConclusionDans cette partie, nous avons étudié la classe des formules Horn éten-dues, ainsi que les classes proches telles que Horn étendues simples, Hornélargies et Horn élargies simples. Nous avons quatre classes pour les-quelles le test de satisfaisabilité se fait à l'aide uniquement de la résolu-tion unitaire, ce qui nous permet de proposer la génération à délai O(nN)pour toutes les formules de ces classes.Nous avons étudié la structure d'agrégats, qui nous a permis de construiredes algorithmes de reconnaissance linéaires pour les formules Horn éten-dues simples et Horn élargies simples.Cette structure d'agrégats et l'étude que nous avons faite peut aiderà mieux connaître les formules Horn étendues. Des idées de ce typespourront sans doute être utilisées pour trouver un algorithme polynomialde reconnaissance des formules Horn étendues.Étudier la classe Horn étendue, ainsi que les classes apparentées, nousa donné l'idée de généraliser les notions d'arbre et de chemins qui sont àla base des dé�nitions de ces classes. Cela nous a permis de mettre à jourla classe des formules ordonnées, que nous présentons dans la partie III.
89

Chapitre 4. Conclusion

90

Troisième partieFormules ordonnées et presqueordonnées

91

Chapitre 1Formules ordonnéesSommaire1.1 Présentation 931.2 Dé�nitions 941.3 Satisfaisabilité et génération à délai po-lynômial . 951.4 Algorithme de reconnaissance 961.5 Formules ordonnées-renommables 971.1 PrésentationNous présentons la classe des formules ordonnées. Il s'agit d'une ex-tension de la classe des formules de Horn étendant les formules Hornélargies simples pour laquelle la résolution unitaire su�t, de la mêmefaçon que pour les formules de Horn, à déterminer la satisfaisabilité. Onpeut générer les solutions de telles formules avec un délai O(nN) (où Nest la longueur totale de la formule et n son nombre de variables). Nousprésentons un algorithme de complexité O(nN) permettant de tester siune formule appartient ou non à cette classe. Renommer (i.e. inverser lesigne de toutes les occurrences) certaines variables ne change pas la sa-tisfaisabilité d'une formule. Nous allons ici étudier la classe des formulesordonnées-renommables, c'est à dire telles qu'en renommant certainesvariables on obtient une formule ordonnée. Les résultats obtenus sur lesformules ordonnées s'appliquent aux formules ordonnées-renommables,donc on peut résoudre le problème de satisfaisabilité en temps O(N) etgénérer toutes les solutions avec un délai O(nN). Nous présentons dansce chapitre un algorithme de complexité O(nN) pour la reconnaissancedes formules ordonnées-renommables.93

Chapitre 1. Formules ordonnées1.2 Dé�nitionsLa dé�nition des formules ordonnées étend naturellement celle desformules de Horn. On rappelle qu'une formule de Horn est une formuledont chaque clause contient au plus un littéral positif. Une formuleF seraappelée ordonnée si chacune de ses clauses contient au plus un littéralpositif libre. La dé�nition suivante introduit la notion de littéral libre.Dé�nition 30 (littéral libre/lié) Soit C 2 F et l 2 C. On dit que lest lié dans C (par rapport à F), si on a Occ(l) = ; ou s'il existe t 2 C(t 6= l) tel que Occ(l) � Occ(t). Si l n'est pas lié dans C, alors on ditque l est libre dans C.Exemple : Soit F1 = fC1; C2; C3; C4g avec C1 = fx1; x2; x3; x4g, C2 =f:x1; x2;:x3g, C3 = f:x1;:x2;:x4; x5g, C4 = f:x1; x3; x4;:x5g. x2 estlié dans C1 par rapport à F1, puisque Occ(:x2) � Occ(:x1), mais lelittéral x1 est libre dans C1 par rapport à F1, puisque pour tout littérall appartenant à C1, OccF1 (:x1) 6� OccF1(l).La proposition suivante généralise le fait que si toute clause de Fcontient un littéral négatif, alors F est satisfaisable. On rappelle que pourtoute clause C sur V , on appelle neg(C) l'ensemble fx 2 V j :x 2 Cg.Proposition 69 Si toute clause C 2 F contient un littéral négatif ouun littéral lié dans C, alors F est satisfaisable.Preuve : Soit V = fx1; : : : ; xng, on dé�nit un ordre partiel sur V par :xi � xj ssi Occ(:xi) (Occ(:xj) ou (Occ(:xi) = Occ(:xj) et i � j). SoitW = fy 2 V j il existe C 2 F tel que neg(C) = ;, y 2 C, y est lié dans Cet y est minimal dans C pour l'ordre �g et M = W [f:y j y 2 V nWg.Prouvons que M est un modèle de F . Soit C 2 F . Si neg(C) = ;,alors par hypothèse, C contient un littéral lié dans C et par dé�nition,C \W 6= ;, donc C \M 6= ;. Supposons que neg(C) 6= ; et soit y unélément maximal de neg(C). Nous allons montrer que y 62 W . Supposonsque y 2 W et soit C 0 2 F une clause telle que y 2 C 0, neg(C 0) = ;, y estlié et minimal dans C 0. On a Occ(:y) 6= ;. Donc il existe z 2 C 0 (z 6= y)tel que Occ(:y) � Occ(:z) et y � z. Nous avons :z 2 C et donc y n'estpas maximal dans neg(C), contradiction. Finalement, y 62 W , :y 2 Met C \M 6= ;. 2Exemple : Toute clause C de la formule F1 dé�nie ci-dessus contient unlittéral négatif ou un littéral positif lié. On a x2 � x4 � x1, x3 � x1,W = fx2; x3g et M = f:x1; x2; x3;:x4;:x5g.94

1.3. Satisfaisabilité et génération à délai polynômialNous introduisons maintenant la notion de formule ordonnée. Cettedé�nition généralise celle des formules de Horn. On rappelle qu'une for-mule est dite de Horn, si chacune de ses clauses contient au plus unlittéral positif.Dé�nition 31 (formule ordonnée) Une formule F est ordonnée sichaque clause C 2 F contient au plus un littéral positif libre dans C.Exemple : F1 est ordonnée car x1 est le seul littéral positif libre dans C1(Occ(:x2) � Occ(:x1), Occ(:x3) � Occ(:x1) et Occ(:x4) � Occ(:x1))et x3 est le seul littéral positif libre dans C4 (Occ(:x4) � Occ(x5)).Remarque 3 Toute formule de Horn est ordonnée.Remarque 4 Si les clauses de F ne contiennent que des littéraux posi-tifs, alors F est ordonnée.Remarque 5 Toute formule Horn élargie simple est ordonnée et parconséquent toute formule Horn étendue simple est aussi ordonnée.1.3 Satisfaisabilité et génération à délai po-lynômialOn sait que si F est une formule de Horn et qu'elle ne contient pasde clause unitaire positive, alors F est satisfaisable. Cette propriété restevraie si F est ordonnée.Une clause unitaire C est dite positive si C = fxg avec x 2 V . On saitque si F est une formule de Horn, et ne contient pas de clause unitairepositive, alors F est satisfaisable. Cette propriété reste vraie si F estordonnée.Proposition 70 Si F est ordonnée et ne contient pas de clause unitairepositive C = fxg, telle que x est libre dans C, alors F est satisfaisable.Preuve : Conséquence immédiate de la Prop. 69. 2Il est facile de voir que si F est une formule de Horn, alors pourtout ensemble �ni U de clauses unitaires, Noyau(F [U) est une formulede Horn. Nous montrons ici que cette propriété est conservée pour lesformules ordonnées.Proposition 71 Soit U un ensemble �ni de clauses unitaires sur V , siF est ordonnée, alors Noyau(F [U) est ordonnée. 95

Chapitre 1. Formules ordonnéesPreuve : Soit F 0 = Noyau(F [U) et C 0 2 F 0. Il existe C 2 F tel queC \ Unit(F [U) = ;, et C 0 = C n Unit(F [U). Soit l 2 C 0. Supposonsque l est lié dans C par rapport à F . On prouve que l est lié dans C 0 parrapport à F 0. Supposons que OccF 0(l) 6= ;. Alors OccF (l) 6= ; et il existet 2 C (t 6= l) tel que OccF (l) � OccF (t). On a C \ Unit(F [U) = ;,donc t 62 Unit(F [U) et t 62 Unit(F [U). De plus, t 62 Unit(F [U),car sinon t 2 Unit(F [U), OccF 0 (t) = ; et OccF 0 (l) = ;. D'où t 2 C 0,OccF 0 (l) � OccF 0(t), et l est lié dans C 0 par rapport à F 0. Par hypothèse,C contient au plus un littéral positif libre dans C, donc C 0 contient auplus un littéral positif libre dans C 0. 2Exemple : Soit U = ff:x4g; fx5gg, étudions la formuleF1[U .Noyau(F1[U) = ffx1; x2; x3g, f:x1; x2;:x3g, f:x1; x3gg. On peut véri�er queNoyau(F1[U) est une formule ordonnée : x1 est le seul littéral positif libre dans lapremière clause et les deux autres clauses véri�ent trivialement la dé�-nition car elles ne contiennent qu'un seul littéral positif. Puisque cetteformule est ordonnée et ne contient pas de clause unitaire, elle est sa-tisfaisable. Donc, F1 [U est satisfaisable ssi Unit(F1 [U) est cohérent.Unit(F1 [U) = f:x4; x5g, est un ensemble cohérent,donc F1 [U estsatisfaisable.Proposition 72 On peut tester en temps O(N) si une formule ordonnéeest satisfaisable.Preuve : Conséquence des Prop. 70 et 71. 2Les propositions Prop. 70 et Prop. 71 impliquent que les formulesordonnées véri�ent les propriétés P1 et P2. Leurs modèles peuvent doncêtre générés avec un délai polynômial (Partie I Chap. 2 Prop. 3 et Co-rollaire 4).1.4 Algorithme de reconnaissanceNous allons montrer qu'il est possible de tester si un formule estordonnée avec un algorithme polynômial. Ce résultat n'est pas trivial,puisqu'il existe des classes de formules pour lesquelles on connaît unalgorithme polynômial qui résout SAT et que l'on ne sait pas reconnaître,c'est le cas par exemple des formules Horn étendues (Partie II de cettethèse)Proposition 73 On peut décider en temps O(nN) si une formule F estordonnée.96

1.5. Formules ordonnées-renommablesPreuve : Soit Lit(V) = fl1; : : : ; l2ng. On construit un tableau à deuxdimensions M [i; j] (i; j 2 f1; : : : ; 2ng) tel que M [i; j] = 1 si Occ(li) �Occ(lj) et M [i; j] = 0 sinon. Cette construction peut être réalisée parla procédure Inclusion (Fig. 1.1). On va montrer que sa complexité estO(nN). Les étapes 1 et 2 peuvent être exécutées en un tempsO(j Occ(li) j+ j Occ(lj) j) en utilisant un tableau auxiliaire de booléens qui est indexésur l'ensemble f1; : : : ; 2ng. Le coût de la procédure Inclusion est propor-tionnel à S = �2ni=1�ij=1(j Occ(li) j + j Occ(lj) j). On a S = S1 + S2 avecS1 = �2ni=1(j Occ(l1) + : : :+ j Occ(li) j) et S2 = �2ni=1(i: j Occ(li) j). Main-tenant, S1 � 2nN et S2 � �2ni=1(i: j Occ(li) j) = �2ni=1�2nk=i j Occ(lk) j��2ni=1N = 2nN . On en déduit que la complexité de Inclusion est O(nN).Les ensembles Occ(li) (1 � i � 2n) donnés en entrée à la procédure In-clusion peuvent être calculés en temps O(N). La complexité totale de laconstruction de M est donc O(nN). Maintenant, soit C 2 F et l 2 C.Une fois les ensembles Occ(li) (1 � i � 2n) calculés, on peut tester queOcc(l) 6= ; en un temps constant pour tout littéral l. En utilisant M , onpeut déterminer si l est libre dans C en temps O(j C j). D'où on déduitque l'on peut déterminer si une clause C 2 F contient au plus un littéralpositif libre en temps O(n j C j). Finalement, on peut décider en tempsO(nN) si F est ordonnée. 2Procédure InclusionEntrée : Les ensembles Occ(li) (1 � i � 2n) ;Sortie : Un tableau à deux dimensions M [i; j] (i; j 2 f1; : : : ; 2ng) tel queM [i; j] = 1 si Occ(li) � Occ(lj) et M [i; j] = 0 sinon.débutpour i = 2 jusqu'à 2n fairepour j = 1 jusqu'à i fairedébut(1) si Occ(li) � Occ(lj) alors M [i; j] 1 sinon M [i; j] 0 ;(2) si Occ(lj) � Occ(li) alors M [j; i] 1 sinon M [j; i] 0 ;�n ;�n Fig. 1.1 � Procédure Inclusion1.5 Formules ordonnées-renommablesSoit x une variable apparaissant dans F . On rappelle que renommerune variable consiste à remplacer toutes les occurrences de x par :x ettoutes les occurrences de :x par x. Nous allons présenter un ensemblede résultats portant sur la possibilité de renommer certaines variables97

Chapitre 1. Formules ordonnéesd'une formule quelconque pour la transformer en une formule ordonnée.Nous proposons un algorithme polynômial O(nN) (où n est le nombrede variables et N la longueur totale de la formule) permettant de testersi une formule est ordonnée-renommable et de donner l'ensemble desvariables qu'il faut renommer pour obtenir une formule ordonnée. Onprouve que le renommage conserve les propriétés P1 et P2. Donc, si Fest obtenue en renommant certaines variables d'une formule ordonnée,alors on peut générer les modèles de F avec un délai polynômial.Dé�nition 32 (formule ordonnée-renommable) F est ordonnée-renommablesi on peut la transformer en une formule ordonnée en renommant cer-taines de ses variables.Exemple : Soit F2 = fC 01; C 02; C 03; C 04g, avec C 01 = f:x1; x2;:x3; x4g,C 02 = fx1; x2; x3g, C 03 = fx1;:x2;:x4; x5g, C 04 = fx1;:x3; x4;:x5g. F2est une formule ordonnée-renommable, puisque F2 est obtenue en renom-mant les variables x1 et x3 dans la formule F1.On véri�e dans un premier temps que la classe des formules ordonnées-renommables véri�e la propriété P1.Proposition 74 Si F est ordonnée-renommable, alors pour tout en-semble de littéraux U , la formule Noyau(F [U) est ordonnée-renommable.Preuve : On rappelle qu'un renommage est un ensemble de littéraux quiest cohérent et complet (cf. dé�nitions Partie I, Sec. 1.2).Comme F est ordonnée-renommable, il existe un renommage R telque R(F) est ordonnée. Soit U 0 = R(U), on a donc Noyau(R(F) [U 0) = Noyau(R(F [U)) est ordonnée (Prop. 71). D'où Noyau(F [U)est ordonnée-renommable. 2Nous véri�ons maintenant que la classe des formules ordonnées-renommablesvéri�e aussi P2.Proposition 75 Si F est ordonnée-renommable et toute clause C 2 Fest de longueur supérieure ou égale à deux, alors F est satisfaisable.Preuve : Évident car le renommage des variables ne change pas la satis-faisabilité d'une formule. 2Comme la classe des formules ordonnées-renommables véri�e les pro-priétés P1 et P2, les résultats établis dans la Partie I impliquent que l'onpeut résoudre e�cacement le problème SAT pour de telles formules, etaussi générer e�cacement tous leurs modèles.Corollaire 76 Si F est ordonnées-renommable, alors le problème de sa-tisfaisabilité de la formule F peut être résolu en temps O(N) et les mo-dèles de F peuvent être générés avec un délai O(nN).98

1.5. Formules ordonnées-renommablesOnmontre maintenant que l'on peut reconnaître les formules ordonnées-renommables en temps polynômial de la même manière que l'on peutreconnaître les formules Horn-renommables. Notre algorithme est basésur les propriétés du graphe orienté qui représente les contraintes que Fdoit satisfaire pour être ordonnée-renommable. Ce graphe est similaireau graphe d'implication introduit par Aspvall et al. [2] (Partie I, Chap. 2)pour déterminer en temps linéaire si une formule binaire est satisfaisable.On rappelle que l'on peut représenter tout renommage comme unensemble de littéraux R, cohérent et complet pour V , en respectant laconvention suivante : la variable x est renommée ssi :x 2 R ; on écritR(x) = x et R(:x) = :x si x 2 R (x n'est pas renommée), et on écritR(x) = :x et R(:x) = x si :x 2 R (x est renommée). On remarque quepour l 2 Lit(V), R(l) est positif ssi l 2 R.Supposons que R est un ensemble de littéraux qui représente un re-nommage qui transforme F en une formule ordonnée. Soient C 2 F etl; t 2 C. Supposons que l et t sont libres dans C. Alors R ne peut pascontenir à la fois l et t ; plus précisément, si l 2 R, alors t 2 R. Ceci nousemmène à dé�nir la relation F=) sur l'ensemble Lit(V).Dé�nition 33 (F=)) Pour tous l; t 2 Lit(V), l F=) t ssi il existe C 2 Ftelle que l 2 C, t 2 C, l 6= t et l et t sont tous les deux libres dans C.On notera G(F) le graphe associé à la relation F=).Exemple : Construisons le graphe G(F2) correspondant à la formule F2.Dans la première clause, un seul littéral est libre : :x1 ; on n'ajoute doncpas d'arc dans le graphe. Dans la seconde clause, les littéraux x2 et x3sont libres ; on ajoute donc les arcs x2 ! :x3 et x3 ! :x2 dans G(F2).Dans la troisième clause, les littéraux :x2 et :x4 sont libres ; on ajoute:x2 ! x4 et :x4 ! x2 dans G(F2). Dans la dernière clause, x1 et :x3sont libres, G(F2) reçoit donc deux arcs supplémentaires x1 ! x3 et:x3 ! :x1. On peut voir le graphe G(F2) en Fig. 1.2.x1 x2x3 x4 x5:x1:x2:x3:x4 :x5Fig. 1.2 � Graphe G(F2)On appelle F=)� la clôture transitive et ré�exive de F=), et pour toutlittéral l, ClosF (l) représente l'ensemble ft j l F=)� tg (on écrira parfois99

Chapitre 1. Formules ordonnéesplus simplement Clos(l) lorsqu'aucune confusion ne sera possible). Unensemble de littéraux L est dit F-clos si (l 2 L et l F=) t) implique quet 2 L. On remarque que L est F -clos ssi Clos(l) � L pour tout l 2 L.On peut observer que l F=) t ssi t F=) l, et l F=)� t ssi t F=)� l (dualité).Proposition 77 F est ordonnée-renommable ssi il existe R � Lit(V)tel que R est cohérent, F-clos et complet pour V .Preuve : ()) SoitX � V tel que le renommage des variables deX trans-forme F en une formule ordonnée F 0. Soit R = f:p j p 2 V \Xg [fp jp 2 V nXg. Par dé�nition R est cohérent et complet. On montre main-tenant que R est F -clos. Soient l et t deux littéraux tels que l 2 R etl F=) t. Nous devons prouver que t 2 R. Il existe une clause C 2 F telleque l; t 2 C, l 6= t et les deux littéraux l et t sont libres dans C parrapport à F . Soit C 0 2 F 0 la clause obtenue en renommant les variablesde X dans C. C 0 contient R(l) et R(t). R(l) est positif puisque l 2 R,R(t) est négatif car F 0 est ordonnée et C 0 contient au plus un littéralpositif libre. Par conséquent t 62 R et t 2 R.(() Soit R � Lit(V) un ensemble cohérent, F -clos et complet pour V .Et soit F 0 la formule obtenue en renommant les variables x telles que:x 2 R dans la formule F . On montre maintenant que F 0 est ordonnée.Soit C 0 2 F 0 et C la clause correspondante de F . Supposons que C 0contienne un littéral positif libre dans C 0 par rapport à F 0, appelons lel0. Soit l 2 C tel que R(l) = l0. On a l 2 R puisque R(l) est positif. Soitt0 2 C 0 (t0 6= l0) un littéral libre dans C 0 par rapport à F 0, et t 2 C telque R(t) = t0. On a t 6= l et l et t sont libres dans C par rapport à F .Donc l F=) t et t 2 R puisque R est F -clos. Finalement, t 62 R et R(t)est négatif. Ceci prouve que F 0 est ordonnée. 2Exemple : Pour la formule F2, le graphe G(F2) de la relation F2=) estdonné en Fig. 1.2. On peut voir que l'ensemble complet et cohérent delittéraux f:x1; x2;:x3; x4; x5g est F2-clos. Il correspond au renommagedes variables x1 et x3 ; il transforme F2 en F1 qui est une formule ordon-née.Le Lemme 78 sera utilisé dans les preuves des Prop. 79 et 83.Lemme 78 Si L est un ensemble de littéraux F-clos et l est un littéraltel que l =2 L alors Clos(l) \ L = ;.Preuve : Soit t 2 Clos(l). On a l F=)� t et donc t F=)� l par dualité. Sit 2 L alors t 2 L, et l 2 L puisque L est F -clos. Contradiction. 2100

1.5. Formules ordonnées-renommablesLa Prop. 79 est une caractérisation utile des formules ordonnées-renommables, elle va servir à écrire un algorithme de reconnaissance deces formules.Proposition 79 F est ordonnée-renommable ssi pour tout x 2 V , Clos(x)est cohérent ou Clos(:x) est cohérent.Preuve : ()) Soit R � Lit(V) un ensemble cohérent, F -clos et completpour V (Prop. 77). Soit x 2 V . Si x 2 R, alors Clos(x) � R (R estF -clos) et Clos(x) est cohérent (R est cohérent). Sinon, :x 2 R, (R estcomplet) et Clos(:x) est cohérent.(() Soit V = fx1; : : : ; xng. On dé�nit les ensembles de littéraux L1; : : : ; Lnde la façon suivante. Si Clos(x1) est cohérent, alors L1 = Clos(x1), dansle cas contraire, L1 = Clos(:x1). Pour tout i 2 f2; : : : ; ng, si xi 2 Li�1ou :xi 2 Li�1, alors Li = Li�1, sinon Li = Li�1 [Clos(xi) si Clos(xi)est cohérent, et Li = Li�1[Clos(:xi) si Clos(xi) est incohérent. Par dé-�nition Li (1 � i � n) est F -clos. Prouvons maintenant par récurrenceque Li (1 � i � n) est cohérent. Par dé�nition L1 est cohérent. Soiti 2 f2; : : : ; ng. Si xi 2 Li�1, ou :xi 2 Li�1, alors Li = Li�1, et Li est co-hérent par hypothèse de récurrence. Supposons que xi 62 Li�1, :xi 62 Li�1et Li = Li�1[Clos(xi) (la preuve est similaire si Li = Li�1[Clos(:xi)).Par hypothèse, Clos(xi) est cohérent et Li�1 est cohérent par hypothèsede récurrence. Le Lemme 78 implique que Li est cohérent. Finalement Lnest complet pour V , cohérent et F -clos, donc F est ordonnée-renommable(Prop. 77). 2En utilisant la caractérisation mise en évidence ci-dessus, il est main-tenant facile de reconnaître si une formule est ordonnée-renommable.Proposition 80 On peut tester en temps O(nN) si une formule F estordonnée-renommable.Preuve : Pour tout littéral l, Clos(l) est incohérent ssi l 2 Clos(l). Doncpour tout x 2 V , les deux ensembles Clos(x) et Clos(:x) sont incohé-rents ssi x et :x sont dans la même composante fortement connexe deG(F). La Prop. 79 implique que F est ordonnée ssi pour tout x 2 V , x et:x ne sont pas dans la même composante fortement connexe de G(F).On peut remarquer que G(F) contient O(nN) arcs. Les composantesfortement connexes de G(F) peuvent être calculées en temps O(nN) enutilisant l'algorithme de Tarjan [47]. On peut tester si une composantefortement connexe de G(F) contient des littéraux complémentaires entemps O(n) en utilisant un tableau de booléens indexé par les élémentsde V . Il reste à prouver que G(F) peut être construit en temps O(nN).On utilise la procédure Construit-G(F) (Fig. 1.3). Le pas 2 peut êtreréalisé en temps O(nN) par la procédure Inclusion (Fig. 1.1 et preuve de101

Chapitre 1. Formules ordonnéesProp. 73). Les pas 3 et 4 prennent un temps O(�(j Ci j2) (pour le pas 3,voir la preuve de la Prop. 73) et O(�(j Ci j2) � O(nN). Ceci implique lerésultat désiré. 2Procédure Construit-G(F)début1. A ; ; {A représente l'ensemble des arcs de G(F).}2. Construire un tableau à deux dimensions M [i; j] tel queM [i; j] = 1 si Occ(li) � Occ(lj) et M [i; j] = 0 sinon.3. Pour tout C 2 F calculer, à l'aide de M , l'ensemble Libre(C)des littéraux libres dans C.4. Pour tout C 2 F et tout fl; tg � Libre(C), A A [f(l; t); (t; l)g ;�n Fig. 1.3 � Procédure Construit-G(F)Les classes ordonnées et ordonnées-renommables sont donc deux nou-velles classes étendant Horn, dont la reconnaissance est polynômiale etpour lesquelles il existe un algorithme de génération à délai polynômial.

102

Chapitre 2Formules presque ordonnéesSommaire2.1 Présentation 1032.2 Génération à délai polynômial 1072.3 Reconnaissance des formules presque or-données . 1122.1 PrésentationDans ce chapitre, nous étendons la classe des formules ordonnées detelle façon que les modèles des nouvelles formules puissent toujours êtregénérés avec un délai polynômial. Nous adaptons les résultats obtenussur la notion de base de Horn présentée par Hébrard et Luquet [32] etsur les formules presque Horn (Partie I Chap. 3) aux formules ordonnées.Nous présentons la classe des formules presque ordonnées, qui malheu-reusement, tout comme la classe des formules presque Horn, ne véri�epas la propriété P1. On rappelle que la classe C véri�e P1 quand pourtout ensemble de clauses unitaires U , si F 2 C alors Noyau(F [U) 2 C.De la même manière que pour les formules presque Horn, nous pré-sentons un ordre sur les variables qui permet d'être sûr que pour toutensemble de clauses unitaires U utilisé dans l'algorithme de générationdes solutions (Partie I Fig. 1.1) on a Noyau(F [U) est presque ordonnéesi F est presque ordonnée. On peut donc générer avec un délai O(nN)tous les modèles de telles formulesNous donnons de plus un algorithme de complexité O(n2N) pour lareconnaissance des formules presque ordonnées.Soit X � V et C 2 F . On rappelle qu'une clause C est dite clausesur X si C � Lit(X).Dé�nition 34 (formule X-ordonnée, formule X-ordonnée-renommable)Soit X � V . F est X-ordonnée si pour toute clause C 2 F et tout littéral103

Chapitre 2. Formules presque ordonnéespositif x 2 X, on a : si x est libre dans C, alors C � Lit(X) et x est leseul littéral positif libre dans C.F est X-ordonnée-renommable si on peut transformer F en une for-mule X-ordonnée en renommant certaines de ses variables.Exemple : Soit G1 la formule ffx1; x2g, fx3;:x4; x5g, f:x3;:x4; x5g,f:x1;:x2;:x3; x6; x7g, f:x3; x4;:x5; x6;:x7g, f:x1;:x3;:x5;:x6; x7g,f:x1;:x2; x6;:x7g, fx6; x7g, f:x6;:x7gg. G1 est fx3; x4; x5g-ordonnée,on peut véri�er que les clauses contenant un littéral positif libre surfx3; x4; x5g sont fx3;:x4; x5g et f:x3;:x4; x5g ; elles ne contiennent quedes littéraux appartenant à Lit(fx3; x4; x5g) (la clause f:x3; x4;:x5; x6;:x7gcontient le littéral positif x4, mais x4 n'est pas libre car Occ(:x4) �Occ(x5) et :x5 appartient à cette clause).On peut remarquer que les clauses d'une formuleX-ordonnée peuventêtre de trois types :� clauses sur X contenant au plus un littéral positif libre.� clauses sur V contenant un ou des littéraux négatifs ou liés de Lit(X)ainsi que un ou des littéraux de Lit(V n X), mais ne contenant aucunlittéral positif libre de Lit(X).� clauses sur l'ensemble V nX.On remarque que F est ordonnée ssi F est V -ordonnée, et que F estordonnée-renommable ssi elle est V -ordonnée-renommable. On montreque si F est X-ordonnée-renommable avec X 6= ;, et F ne contient pasde clause unitaire, alors décider si F est satisfaisable se ramène à décidersi un sous-ensemble strict de F est satisfaisable.Notation 3 Soit X � V . On note Reste(F ;X) l'ensemble fC 2 F jC \ Lit(X) = ;g.Proposition 81 Si F est X-ordonnée-renommable et ne contient pasde clause unitaire positive, alors F est satisfaisable ssi Reste(F ;X) estsatisfaisable.Preuve :()) Immédiat.(() Cas particulier : F est X-ordonnée. Soit M � Lit(V nX) un modèlede Reste(F ;X). Soit F 0 = fC 0 � Lit(X) j il existe C 2 F nReste(F ;X)telle que C\M = ; et C 0 = CnMg. Soit C 0 2 F 0 et C 2 F nReste(F ;X)tel que C \M = ; et C 0 = C nM . Par hypothèse, C contient un littérall 2 Lit(X) tel que l est négatif ou l est lié dans C par rapport à F . On al 2 C 0 car M � Lit(V nX). Supposons que l est lié dans C par rapportà F . On va prouver que l est lié dans C 0 par rapport à F 0. Supposonsque OccF 0(l) 6= ;. Alors OccF (l) 6= ; et il existe t 2 C (t 6= l) tel queOccF (l) � OccF (t). On a C \M = ;, donc t 62 M et t 62 M . De plus,104

2.1. Présentationt 62M , puisque dans le cas contraire t 2M , OccF 0(t) = ; et OccF 0 (l) = ;D'où t 2 C 0, OccF 0 (l) � OccF 0(t), et l est lié dans C 0 par rapport à F 0.Ceci montre que toute clause C 0 2 F 0 contient un littéral négatif ou unlittéral lié dans C 0.Donc F 0 est satisfaisable (Prop. 69). SoitM 0 un modèle de F 0.M[M 0est cohérent, car var(Reste(F ;X)) \ var(F 0) = ;. Soit C 2 F . Ou bienC \M 6= ;, ou bien il existe C 0 2 F 0 telle que C 0 � C, C 0 \M 0 6= ; etC \M 0 6= ;. Donc F est satisfaisable.Cas Général : F est X-ordonnée-renommable. Se déduit directementdu cas précédent, car le renommage préserve la satisfaisabilité. 2La relation F=) peut être utilisée pour caractériser le fait que F estX-ordonnée-renommable.Proposition 82 F est X-ordonnée-renommable ssi il existe un ensemblede littéraux R � Lit(X) tel que R est cohérent, F-clos et complet pourX.Preuve : La preuve de cette proposition est pratiquement la même quecelle de la Prop. 77. Il su�t de remplacer V par X. 2Exemple :On peut voir (Fig. 2.1) que l'ensemble des noeuds fx3;:x4; x5gest G1-clos. On voit aussi que l'ensemble fx1;:x2g est cohérent et G1-clos,donc G1 est aussi fx1; x2g-ordonnée-renommable.Proposition 83 Soit X1 � V et X2 � V . Si F est X1-ordonnée-renommable et X2-ordonnée-renommable alors F est (X1[X2)-ordonnée-renommable.Preuve : Grâce à la Prop. 82, on obtient qu'il existe R1 � Lit(X1) etR2 � Lit(X2) tels que R1 et R2 sont cohérents, F -clos et complets res-pectivement pour les ensemblesX1 et X2. L'ensembleR = R1[(R2 nR1)est cohérent et complet pour X1 [X2. On prouve maintenant que R estF -clos. Soit l 2 R. Si l 2 R1 alors Clos(l) � R1 � R car R1 est F -clos.Si l 2 R2 n R1 alors Clos(l) � R2. Le lemme 78 avec L = R1 montreque Clos(l) � (R2 n R1) � R. La conclusion est une conséquence de laProp. 82. 2On cherche maintenant à caractériser le plus grand ensemble X telque F soit X-ordonnée-renommable. Celui-ci est unique, grâce à la pro-position ci-dessus.Dé�nition 35 (base ordonnée, OReste(F)) Soient X1; : : : ;Xk tousles sous-ensembles de V tels que F est Xi-ordonnée-renommable et B =X1 [: : : [Xk. La Prop. 83 implique que F est B-ordonnée-renommable.105

Chapitre 2. Formules presque ordonnées
x1x2x3 x4x5 x6 x7:x1
:x2

:x3
:x4

:x5 :x6:x7
Fig. 2.1 � Graphe G(G1)L'ensemble B sera appelé la base ordonnée de F et notée OBase(F). Onutilisera la notation OReste(F) pour représenter la formule Reste(F ; OBase(F)).Exemple : L'ensemble fx1; x2; x3; x4; x5g est cohérent et G1-clos ; parcontre les littéraux x6;:x6; x7;:x7 appartiennent à une seule composantefortement connexe de G(G1) (voir Fig. 2.1) il n'existe donc pas d'ensemblecohérent et G1-clos contenant un de ces littéraux, ils n'appartiennent doncpas à la base ordonnée de G(G1). Donc OBase(G1) = fx1; x2; x3; x4; x5get la formule G1 est fx1; x2; x3; x4; x5g-ordonnée-renommable (et mêmefx1; x2; x3; x4; x5g-ordonnée).Corollaire 84 Si F ne contient pas de clause unitaire, alors F est sa-tisfaisable ssi OReste(F) est satisfaisable.On remarque donc que si F ne contient pas de clause unitaire et queOReste(F) = ;, alors F est satisfaisable.Nous présentons une dé�nition alternative de la base ordonnée quiutilise la relation F).Proposition 85 OBase(F) = fx 2 V j Clos(x) est cohérent ou Clos(:x)est cohérentg.106

2.2. Génération à délai polynômialPreuve : Soit x 2 V et R � Lit(OBase(F)) tel que R est cohérent,F -clos et complet pour OBase(F) (Prop. 82). Si x 2 OBase(F), alorsx ou :x appartient à R, donc Clos(x) ou Clos(:x) est cohérent. Sup-posons maintenant que Clos(x) soit cohérent (l'autre cas est similaire).Soit X = var(Clos(x)). La Prop. 82 implique que F est X-ordonnée-renommable. Donc, X � OBase(F) et x 2 OBase(F). 2Cette caractérisation de la base ordonnée d'une formule nous permetde déduire de nouvelles propriétés pour les bases ordonnées et les restesordonnés.Proposition 86 Si F 0 � F alors OReste(F 0) � OReste(F).Preuve : On observe que pour tous l; t 2 Lit(var(F 0)), si OccF (l) �OccF (t), alors OccF 0(l) � OccF 0(t). Donc tout arc de G(F 0) est un arc deG(F). Donc pour tout littéral l 2 Lit(var(F 0)), si ClosF (l) est cohérent,alors ClosF 0(l) est cohérent. D'où OBase(F) \ var(F 0) � OBase(F 0).Soit C 2 OReste(F 0). On a C \Lit(OBase(F)) � C \Lit(OBase(F 0)).Par dé�nition du reste ordonné C \ Lit(OBase(F 0)) = ;, donc C \Lit(OBase(F)) = ; et C 2 OReste(F). 2On peut remarquer que la base ordonnée de OReste(F) peut êtrenon vide, dans ce cas, OReste(OReste(F)) est strictement inclus dansOReste(F). Il est donc possible de répéter ce processus tant que l'on n'apas obtenu une formule avec une base ordonnée vide.Dé�nition 36 (formule presque ordonnée) Soit OReste-itéré(F) lesous-ensemble de F dé�ni récursivement : si OBase(F) = ; alors OReste-itéré(F) = F sinon OReste-itéré(F) = OReste-itéré(OReste(F)). Uneformule F appartient à la classe presque ordonnée, si OReste-itéré(F) =;.Exemple : OReste(G1) = ffx6; x7g, f:x6;:x7gg (puisque OBase(G1) =fx1; x2; x3; x4; x5g). OReste(G1) est Horn-renommable (on renomme x7par exemple) donc ordonnée-renommable. Ceci implique que,OReste(OReste(G1)) = ;. Donc, G1 est une formule presque ordonnée.Corollaire 87 Si F est presque ordonnée et ne contient pas de clauseunitaire, alors F est satisfaisable.2.2 Génération à délai polynômialOn va maintenant prouver que, même si la classe presque ordonnéene véri�e pas P1, on peut tout de même générer tous les modèles de tellesformules avec un délai O(nN). 107

Chapitre 2. Formules presque ordonnéesProposition 88 Si F 0 � F et F est presque ordonnée, alors F 0 estpresque ordonnée.Preuve : Si OReste-itéré(F) = ;, alors la Prop. 86 implique que OReste-itéré(F 0) = ;. 2La proposition suivante donne une caractérisation des formules presqueordonnées qui va nous être utile par la suite.Proposition 89 F est presque ordonnée ssi il existe k (k � 1), X1; : : : ;Xk,Xi � V (1 � i � k), et F1; : : : ;Fk, Fi � F (1 � i � k), tels que F1 = F ,Fi est Xi-ordonnée-renommable (1 � i � k), Fi+1 = Reste(Fi;Xi)(1 � i � k � 1) et Fk = ;.Preuve : ()) Soit F1 = F , Fi+1 = OReste(Fi) (i � 1) and Xi =OBase(Fi) (i � 1). Par dé�nition,Fi (i � 1) estXi-ordonnée-renommable,et, par hypothèse, il existe k (k � 1) tel que Fk = ;.(() La preuve se fait par récurrence sur k.k = 1 On a F = ;, OReste(F) = ; et F est presque ordonnée.k > 1 Par hypothèse de récurrence, F2 est presque ordonnée. Par dé-�nition de OBase(F1), OReste(F1) � F2. Donc OReste(F1) est presqueordonnée (Prop. 88), OReste-itéré(F1) = ; et F1 est presque ordonnée. 2Remarque 6 Si F est presque ordonnée, alors il existe une formulepresque ordonnée F 0 telle que F est obtenue à partir de F 0 en renommantcertaines variables et de plus il existe k (k � 1), X1; : : : ;Xk (Xi � V)(1 � i � k), et F1; : : : ;Fk, (Fi � F 0) (1 � i � k) tels que F1 = F 0, Fiest Xi-ordonnée (1 � i � k), Fi+1 = Reste(Fi;Xi) (1 � i � k � 1) etFk = ;.Malheureusement, la propriété P1 n'est pas véri�ée pour la classepresque ordonnée.Exemple : Soit U = ffx1g; fx2g; fx3g; fx4g; fx5gg, Unit(G1 [U) =fx1; x2; x3; x4; x5g etNoyau(G1[U) = f fx6;:x7g, f:x6; x7g, f:x6;:x7g,fx6; x7g g. Quel que soit l'ensembleX � fx6; x7g la formule Noyau(G1[U) n'est pas X-ordonnée-renommable, donc Base(Noyau(G1 [U)) = ;,et donc Noyau(G1 [U) n'est pas une formule presque ordonnée.Nous proposons d'ordonner les variables de F de telle sorte que sil'ensemble U de clauses unitaire est construit à partir des i premièresvariables de notre ordre, alors la satisfaisabilité de F [U peut être testéeen temps polynômial. Ceci correspond à la façon dont l'ensemble U estconstruit dans l'algorithme Génération (Partie I, Chap. 1, Fig. 1.1)108

2.2. Génération à délai polynômialDé�nition 37 (permutation convenable, ensemble convenable) Supposonsque F est presque ordonnée. Il existe X1; : : :Xk, Xi � V (1 � i � k),et F1; : : : ;Fk, Fi � F (1 � i � k), tels que F1 = F , Xi = OBase(Fi)(1 � i � k), Fi+1 = OReste(Fi) (1 � i � k � 1) et Fk = ;. SoitW = V n (Xi [: : : [Xk). Une permutation (x1; : : : ; xn) des variables deF est dite convenable si pour tout j (1 � j � n), on a fx1; : : : ; xjg � Wou bien il existe i tel que fx1; : : : ; xjg = W [Xk [Xk�1 [: : :[Xi+1 [Xavec X � Xi. Un ensemble U de clauses unitaires est dit convenable s'ilexiste une permutation convenable (x1; : : : ; xn) et i 2 f1; : : : ; ng tels quevar(U) = fxj j 1 � j � ig.Exemple : On calcule une permutation convenable pour G1 (nous al-lons utiliser les notations présentées dans la dé�nition ci-dessus). F1 =G1, X1 = OBase(G1) = fx1; x2; x3; x4; x5g, F2 = OReste(G1), X2 =OBase(OReste(G1)) = fx6; x7g, et k = 2 puisque Reste(F2;X2) = ;.L'ensemble W est vide. Soit p1 la permutation (x7; x6; x1; x2; x3; x4; x5),p1 est une permutation convenable, il en est de même pour la permu-tation p2 = (x6; x7; x2; x3; x1; x4; x5). L'ensemble U = ff:x6g; fx7gg estconvenable car p1 est une permutation convenable, U = ff:x1g, fx2g,fx6g, f:x7gg est convenable car p2 l'est.La proposition suivante permet de dire qu'à chaque pas de l'algo-rithme Génération (Partie I, Fig. 1.1), on peut, dans le cas où U est unensemble convenable, tester la satisfaisabilité de F [U en n'utilisant quela résolution unitaire.Proposition 90 Supposons que F est presque ordonnée et ne contientpas de clause unitaire. Soit U un ensemble convenable de clauses uni-taires. Alors F [U est satisfaisable ssi Unit(F [U) est cohérent.Preuve :()) Immédiat.(() Il est su�sant de montrer que Noyau(F [U) est presque ordon-née (Prop. 1 et Corollaire 87). La proposition 89 nous dit qu'il existeX1; : : : ;Xk, Xi � V (1 � i � k), et F1; : : : ;Fk, Fi � F (1 � i � k),tels que F1 = F , Xi = OBase(Fi) (1 � i � k), Fi+1 = OReste(Fi)(1 � i � k � 1) et Fk = ;. Pour tout i (1 � i � k), Fi est Xi-ordonnée-renommable. Sans perte de généralité, on peut supposer que Fi est Xi-ordonnée (1 � i � k) (voir Remarque 6). Soit Gi = fC 0 � Lit(V) j ilexiste C 2 Fi; C \ Unit(F [U) = ; et C 0 = C n Unit(F [U)g (1 �i � k). Soit Yi = Xi \ var(Gi) (1 � i � k). On a G1 = Noyau(F [U),Gi � G1 (1 � i � k) et Gk = ;. Il su�t de prouver que Gi est Yi-ordonnée(1 � i � k) et Gi+1 = Reste(Gi; Yi) (1 � i � k � 1) (Prop. 89).Dans un premier temps on va prouver que Gi est Yi-ordonnée (1 �i � k). Soit C 0 2 Gi. La dé�nition des formules Gi nous dit qu'il existe109

Chapitre 2. Formules presque ordonnéesC 2 Fi telle que C \ Unit(F [U) = ;, et C 0 = C n Unit(F [U). Soitl 2 C 0. Supposons que l est lié dans C par rapport à Fi. On va prouverque l est lié dans C 0 par rapport à Gi. Supposons que OccGi(l) 6= ;. AlorsOccFi(l) 6= ; et il existe t 2 C (t 6= l) tel que OccFi(l) � OccFi(t). Ona C \ Unit(F [U) = ;, donc t 62 Unit(F [U) et t 62 Unit(F [U).De plus, t 62 Unit(F [U), OccGi(t) = ; et OccGi(l) = ;. Donc t 2 C 0,OccGi(l) � OccGi(t) et l est lié dans C 0 par rapport à Gi. Maintenant,on suppose que l 2 Lit(Yi), et l est un littéral positif libre dans C 0 parrapport à Gi. Alors l 2 Lit(Xi) et l est libre dans C par rapport à Fi. Parhypothèse, Fi est Xi-ordonnée, donc C � Lit(Xi) et l est le seul littéralpositif de C qui est libre dans C. Donc C 0 � Lit(Yi) et l est le seul littéralpositif de C 0 qui est libre dans C 0. Ceci prouve que Gi est Yi-ordonnée.On prouve maintenant que Gi+1 = Reste(Gi; Yi) (1 � i � k � 1).(�) On a Fi+1 = Reste(Fi;Xi). Donc Fi+1 � Fi et Gi+1 � Gi. SoitC 0 2 Gi+1. Il existe C 2 Fi+1 telle que C 0 � C. On a C 2 Reste(Fi;Xi),c'est pourquoi C \ Lit(Xi) = ;, C 0 \ Lit(Yi) = ; et C 0 2 Reste(Gi; Yi).(�) Soit C 0 2 Reste(Gi; Yi). On a C 0 � Gi et C 0 \ Lit(Yi) = ;. Il existeC 2 Fi telle que C \ Unit(F [U) = ; et C 0 = C n Unit(F [U). Onprouve d'abord que var(U) \ Xj = ; (1 � j � i) (ceci sera néces-saire pour pouvoir appliquer le Lemme 91). On a var(C 0) \ Xj = ;(1 � j < i) pour C 2 Fi et var(C 0) \Xi = ; puisque var(C 0) \ Yi = ;.Donc var(C 0) � V n (X1 [: : : [Xi). On a var(C 0) \ var(U) = ; carC 0 \ Unit(F [U) = ; et C 0 \ Unit(F [U) = ;. Par hypothèse, U estconvenable, donc var(U) \Xj = ; (1 � j � i). Maintenant on va prou-ver que C 2 Fi+1. On suppose que C 62 Reste(Fi;Xi). Alors il existe t 2C\Lit(Xi). On a t 62 C 0 puisque C 0\Lit(Yi) = ;, donc t 2 Unit(F [U).Si t = x (x 2 Xi), alors le Lemme 91(i) implique qu'il existe r 2 Lit(V)(r 6= :x) tel que r 2 C et r 2 Unit(F [U), contradiction. Supposonsque t = :x (x 2 Xi). On a C 0 6= ; et C 0\Lit(Yi) = ;, d'où C 6� Lit(Xi).Donc x est lié dans C par rapport à Fi, et le Lemme 91(ii) implique qu'ilexiste s 2 Lit(V) (s 6= x) tel que s 2 C et s 2 Unit(F [U), contradic-tion. On obtient donc que C 2 Reste(Fi;Xi), C 2 Fi+1 et C 0 2 Gi+1. 2Lemme 91 Supposons que F ne contient pas de clause unitaire et qu'ilexiste X1; : : : ;Xk, Xi � V (1 � i � k), et F1; : : : ;Fk, Fi � F (1 �i � k), tels que F1 = F , Fi est Xi-ordonnée (1 � i � k), Fi+1 =Reste(Fi;Xi) (1 � i � k � 1) et Fk = ;. Soit U un ensemble de clausesunitaires tel que Unit(F [U) est cohérent. Soit i0 2 f1; : : : ; kg tel quepour tout j (1 � j � i0) var(U) \Xj = ;. Soit l 2 Lit(Xj) (1 � j � i0)tel que OccFj (l) 6= ;, et soit � = (C1; : : : ; Cp) une dérivation unitaire deF [U telle que Cp = flg et Ci 6= flg (1 � i < p).i. Si l = x (x 2 Xj), alors il existe r 2 Lit(V) (r 6= :x) tel queOccFj (:x) � OccFj (r) et frg 2 fC1; : : : ; Cp�1g.110

2.2. Génération à délai polynômialii. Si l = :x (x 2 Xj), alors pour tout C 2 Fj, si x 2 C et x est liédans C par rapport à Fj, alors il existe s 2 Lit(V) (s 6= x) tel ques 2 C et fsg 2 fC1; : : : ; Cp�1g.Preuve : Par hypothèse flg 62 F [U . Donc, il existeC 0 2 fC1; : : : ; Cp�1gtelle que C 0 = fl; l1; : : : ; lhg (h � 1), li 6= l et flig 2 fC1; : : :Cp�1g(1 � i � h). Nous faisons une preuve par récurrence sur le nombre q declauses unitaires sur Xg (1 � g � j) qui apparaissent dans �.� q = 1 Cp = flg est une clause unitaire sur Xj . Donc pour tout i(1 � i � h), var(li) 2 V n (X1 [: : : [Xj). Donc C 0 2 Fj.i. On a l = x (x 2 Xj). Fj est Xj -ordonnée, donc x est lié dansC 0 par rapport à Fj. Par hypothèse, OccFj (:x) 6= ;, c'estpourquoi il existe i (1 � i � h) tel que OccFj (:x) � OccFj (li),c'est ce que l'on cherchait à prouver.ii. On a l = :x (x 2 Xj). Soit C 2 Fj tel que x 2 C. Si x est liédans C par rapport à Fj, alors il existe i (1 � i � h) tel queli 2 C car C 0 2 OccFj (:x).� q > 1 Soit j 0 (1 � j 0 � i0) tel que C 0 2 Fj0 et j 0 est maximal.On a j 0 � j pour l 2 Lit(Xj), et C 0 \ Lit(Xj0) 6= ; puisque j 0 estmaximal.On prouve d'abord que pour tout i (1 � i � h) li n'est pas unlittéral négatif sur Xj0 . Supposons qu'il existe i (1 � i � h) telque li = :y et y 2 Xj0 . On a fyg 2 fC1; : : : ; Cp�1g. Il existe p0(1 � p0 < p) tel que Cp0 = fyg et Cu 6= fyg (1 � u < p0). Soit�0 = (C1; : : : ; Cp0). On a OccFj0 (:y) 6= ; (C 0 2 OccFj0 (:y)). Doncles hypothèses du Lemme 91(i) sont satisfaites par y et �0. Parhypothèse de récurrence, il existe r 2 Lit(V) (r 6= :y) tel queOccFj0 (:y) � OccFj0 (r) et frg 2 fC1; : : : ; Cp0�1g. Donc r 2 C 0. Sir = l, alors flg 2 fC1; : : : ; Cp0�1g, ce qui entre en contradictionavec l'hypothèse. Supposons que r 6= l. Alors il existe a (1 � a �h) tel que r = la, donc frg 2 fC1; : : : ; Cp�1g. Ce qui impliqueque Unit(F [U) est incohérent , contradiction. Ceci prouve que li(1 � i � h) n'est pas un littéral négatif de Xj0 .On considére maintenant deux cas :1. Supposons qu'il existe i (i � i � h) tel que li = y et y 2 Xj0 .On a f:yg 2 fC1; : : : ; Cp�1g. Il existe p0 (1 � p0 < p) telque Cp0 = f:yg et Cu 6= f:yg (1 � u < p0). Soit �0 =(C1; : : : ; Cp0). On a OccFj0 (y) 6= ; (C 0 2 OccFj0 (y)). Donc leshypothèses du Lemme 91(ii) sont satisfaites par :y et �0. Sup-posons que y est lié dans C 0 par rapport à Fj0 . Par hypothèsede récurrence, il existe s 2 Lit(V) (s 6= y) tel que s 2 C 0 et111

Chapitre 2. Formules presque ordonnéesfsg 2 fC1; : : : ; Cp0�1g. Si s = l, alors flg 2 fC1; : : : ; Cp0�1g,ce qui entre en contradiction avec les hypothèses. Supposonsque s 6= l. Alors il existe a (1 � a � h) tel que s = la, doncfsg 2 fC1; : : : ; Cp�1g. Par conséquent, Unit(F [U) est in-cohérent, contradiction. Ceci prouve que y est libre dans C 0par rapport à Fj0. Par hypothèses Fj0 est Xj0 -ordonnée, doncC 0 � Lit(Xj0). Mais l 2 C 0 \ Lit(Xj), donc j = j 0 et C 0 2 Fj.i. On a l = x (x 2 Xj) et x est lié dans C 0 par rapport à Fj.Par hypothèse, OccFj (:x) 6= ;, c'est pourquoi il existe i(1 � i � h) tel que OccFj (:x) � OccFj (li), qui est lerésultat recherché.ii. On a l = :x (x 2 Xj). Soit C 2 Fj tel que x 2 C. Si x estlié dans C par rapport à Fj, alors il existe i (1 � i � h)tel que li 2 C car C 0 2 OccFj (:x).2. Il reste à examiner le cas où C 0 \ Lit(Xj0) = flg. Alors on aj = j 0, C 0 2 Fj et var(li) 2 V n (X1 [: : : [Xj) (1 � i � h).i. On a l = x (x 2 Xj), et x est lié dans C 0 par rapport àFj. On conclue de la même manière que pour le cas 1i.ii. On a l = :x (x 2 Xj). On conclue de la même manièreque pour le cas 1ii.2 Ces résultats nous permettent donc de proposer une méthode e�cacepour générer tous les modèles des formules presque ordonnées.Proposition 92 Si F est presque ordonnée et ne contient pas de clauseunitaire, alors les modèles de F peuvent être générés avec un délai O(nN),si une permutation convenable est donnée.Preuve : On rappelle que la résolution unitaire peut être implémentéede manière linéaire. Donc pour tout ensemble convenable U de clausesunitaires, on peut décider en temps O(N) si F [U est satisfaisable(Prop. 90). Donc, si la permutation qui est donnée en entrée à l'algo-rithme Génération (Partie I, Chap. 1, Fig. 1.1) est convenable, alors lesmodèles de F peuvent être générés avec un délai O(nN). 22.3 Reconnaissance des formules presque or-donnéesPour tester si une formule est presque ordonnée, la première chose àfaire est de calculer la base ordonnée de cette formule.112

2.3. Reconnaissance des formules presque ordonnéesProposition 93 La base ordonnée de F peut être calculée en tempsO(nN).Preuve : Soit x 2 V . On déduit de la Prop. 85 que x 62 OBase(F)ssi x F=)� :x et :x F=)� x. Donc x 2 OBase(F) ssi x et :x n'ap-partiennent pas à la même composante fortement connexe de G(F). Onrappelle que la construction de G(F), et le calcul de ses composantes for-tement connexes peut être fait en temps O(nN) (preuve de la Prop. 80).2 Connaissant la base ordonnée d'une formule, il est facile de calculerson reste ordonné, si on itère ce calcul, on obtient le reste itéré de laformule. Déterminer si celui-ci est vide permet de dire si F est presqueordonnée.Proposition 94 On peut tester si une formule F est presque ordon-née, et (si c'est le cas) construire une permutation convenable, en tempsO(n2N).Preuve : L'ensembleOBase(F) peut être calculé en tempsO(nN) (Prop. 93).On remarque que si OBase(F) est connu, alors il est facile de calculerOReste(F) en temps O(N). Donc on peut obtenir OReste(F) en par-tant de F en temps O(nN). Si OBase(F) n'est pas vide, alors l'ensembledes variables sur lequel OReste(F) est dé�ni est strictement inclus dansl'ensemble V ; par conséquent, le calcul de OReste-itéré(F) demande auplus n étapes, et peut donc être e�ectué en temps O(n2N). On obtienten plus comme sous-produit de ce calcul les ensembles X1; : : : ;Xk etles formules F1; : : : ;Fk, tels que F1 = F , Xi = OBase(Fi) (1 � i � k),Fi+1 = OReste(Fi) (1 � i � k�1) et Fk = ;. Il est facile de construire entemps O(n) une permutation convenable lorsque l'on connaît X1; : : : ;Xket V n (X1 [: : : [Xk). 2
113

Chapitre 2. Formules presque ordonnées

114

Conclusion et PerspectivesConclusionDans cette thèse, le �l conducteur que nous avons suivi est la géné-ration à délai polynômial de tous les modèles d'une formule CNF pro-positionnelle, et plus précisément, la génération à délai polynômial enutilisant uniquement la résolution unitaire. Cela nous a conduit à établirdes résultats intéressants :Nous avons donné un algorithme permettant de générer les modèlesde toute formule. Nous avons montré que cet algorithme est e�cace (c'està dire que l'écart entre deux solutions consécutives est polynômial) pourpresque toutes les classes pour lesquelles un algorithme polynômial estconnu pour résoudre le problème SAT. Les seules classes pour lesquellesnotre algorithme n'est pas e�cace, sont celles pour lesquelles l'existenced'un tel algorithme impliquerait que P=NP.Nous nous sommes aussi attachés à la classe des formules Horn éten-dues introduite par Chandru et Hooker. Nous avons étudié les originesde cette classe, et avons prouvé que l'on peut générer tous les modèlesde telles formules avec un délai O(nN) en n'utilisant que la résolutionunitaire. Malheureusement, il n'existe pas, actuellement, d'algorithme dereconnaissance des formules Horn étendues. Nous avons donc du travaillersur deux classes proches, les formules Horn étendues simples et Horn élar-gies simples pour lesquelles nous avons proposé une analyse pointue quinous a permis de dégager une structure importante : les agrégats. Cettestructure nous a amenés à la rédaction d'un algorithme linéaire de recon-naissance des formules Horn élargies simples et Horn étendues simples.Le résultat le plus intéressant de cette thèse est sans doute la pré-sentation et l'étude d'une nouvelle classe des formules, que nous avonsappelée classe des formules ordonnées. Cette extension de Horn peut êtrereconnue en temps O(nN) ; on peut tester si une formule ordonnée estsatisfaisable en temps O(N), en utilisant uniquement la résolution uni-taire, exactement comme pour une formule de Horn ; on peut générer lesmodèles de ces formules avec un délai O(nN). On peut de plus testersi une formule peut être renommée en une formule ordonnée en tempsO(nN) en utilisant une technique très proche de celle utilisée pour testersi une formule est Horn-renommable. Ce résultat est non trivial, en e�et,115

Conclusion et Perspectivespour les formules Horn généralisées, Eiter et al. [23] ont prouvé que ceproblème est NP-complet. On généralise encore cette classe en dé�nis-sant un ensemble de formules, appelées presque ordonnées qui ne sontpas ordonnées-renommables, mais qui le sont presque. Nous proposonsen outre une méthode pour générer tous les modèles des formules presqueordonnées avec un délai polynômial (en n'utilisant que la résolution uni-taire).On peut résumer les résultats obtenus dans cette thèse en examinantle tableau de la génération à délai polynômial (Fig. 2) et le graphe (Fig. 3)représentant les inclusions des classes que nous avons plus particulière-ment étudiées ici.Classe Reconnaissance Satisfaisabilité GénérationHorn O(N) O(N) O(nN)Horn renommable O(N) O(N) O(nN)Binaire O(N) O(N) O(nN)Équilibrée polynômial O(N) O(nN)�k O(nkN) O(nkN) O(nk+1N)�k-renommable NP-complet O(nkN) O(nk+1N)Quad O(N2) O(N2) non si P6=NP
k et �k O(nk+1) O(nk+1) non si P6=NPPresque Horn(*) O(nN) O(1) O(nN)q-Horn O(N) O(N) O(nN)Horn étendue (resp. élargie) Pb ouvert O(N) O(nN)Horn étendue (resp. élargie) simple O(N) O(N) O(nN)Ordonnée O(nN) O(N) O(nN)Ordonnée-renommable O(nN) O(N) O(nN)Presque ordonnée(*) O(n2N) O(1) O(nN)(*) sans clause unitaireFig. 2 � Génération à délai polynômialPerspectivesCes résultats nous ouvrent les portes de recherches dans d'autres di-rections, nous présentons ici quelques idées à creuser.Par exemple il nous semble possible d'utiliser les résultats établislors de l'étude des formules Horn étendues simples pour rechercher unalgorithme polynômial (sans doute ne sera t'il pas linéaire) permettantde déterminer si une formule est Horn étendue.L'algorithme que nous avons présenté pour générer tous les modèlesd'une formule peut très facilement être adapté aux problèmes de satis-faction de contraintes (CSP). On peut étudier l'ensemble des classes de116

HornHorn étendue simpleHorn élargie simpleHorn étendueHorn élargie Horn-renommableOrdonnéeOrdonnée-renommable
BinaireSat Insatq-HornSat InsatPresque HornPresque ordonnéeFig. 3 � Graphe d'inclusion des principales classes étudiées dans cettethèseCSP pour lesquelles on connaît un algorithme polynômial et regardercelles pour lesquelles il est possible de générer toutes les solutions à délaipolynômial. On peut essayer de trouver un analogue à la résolution uni-taire et voir quelles sont les classes pour lesquelles on peut trouver toutesles solutions avec cette seule méthode.De même que l'étude des formules de Horn a conduit à la dé�nitiondes fonctions booléennes de Horn, il est peut-être intéressant de regarderles modèles des formules ordonnées et de voir s'il est possible de dé�-nir un concept similaire que l'on pourrait appeler � fonctions booléennesordonnées�.On peut en outre chercher quels problèmes peuvent se représenter avecdes formules ordonnées ou presque ordonnées. Peut-être des problèmes117

Conclusion et Perspectivesconcrets se modélisent-ils facilement avec des formules appartenant àl'une de ces classes?

118

IndexIndex alphabétique�, 38T+, 43T�, 43�!x , 54F=), 99équation, 59équilibrée, 20, 24acceptable, 72Agrégat, 67agrégat, 89ancêtre, 64anchor(A',T), 72arborescence, 8, 53, 54, 56, 64, 71Arborescence acceptable, 72arborescence acceptable, 73Arborescence viable, 81arbre, 53arc, 54base de Horn, 27�29base ordonnée, 105binaire, 19, 22candidat, 40Chandrasekaran, 54, 59chemin, 8, 53, 54classe Racine, 44clause, 14clause de Horn, 14clause de Horn, 20clause unitaire, 14, 58close par �xation, 40CNeg(x), 15, 54, 64cohérent, 14convenable, 32, 108

CPos(x), 15, 54, 64délai polynômial, 7délai polynomial, 14dérivable, 15dérivation unitaire, 15ensemble convenable, 32, 108forêt, 71formule, 14formule équilibrée, 24formule binaire, 22formule de Horn, 14, 20formule GHorn, 38formule Horn-renommable, 21formule presque Horn, 30génération à délai polynômial, 14génération à délai polynômial, 6GHorn, 38hiérarchie �, 38hiérarchie f�g, 46hiérarchie f
g, 46hiérarchie polynômiale, 40hiérarchie polynomiale, 40Horn, 14, 19�21Horn élargie, 51Horn étendue simple, 51Horn élargie, 65, 89Horn élargie simple, 8, 51, 64, 89Horn élargies simples, 71Horn étendue, 8, 51, 53, 54, 58, 59,65, 89Horn étendue simple, 8, 65, 89Horn renommable, 27119

IndexHorn renommables, 19Horn-renommable, 21identité, 60inégalités, 60incohérent, 14lAgrégats, 69lié, 94libre, 94littéral, 14matrice, 25, 58�61modèle, 15N, 7n, 7neg(C), 15, 54, 64Noyau, 56Noyau(F), 16Occ(l), 15ordonnée, 95, 103, 107ordonnée-renommable, 97, 98ordre acceptable, 28OReste(F), 105parent, 64partiellement, 27permutation convenable, 32, 108pied, 64pos(C), 15, 54, 64presque ordonnée, 107presque Horn, 27, 28, 30programmation linéaire, 54q-Horn, 28, 35R(t), 73réalisation arborescente, 76résolution unitaire, 62résolution unitaire, 15, 27, 55résolution unitaires, 19Racine, 44racine, 53, 54, 64renommable, 97, 103renommage, 15

renomme, 15Reste(F), 28, 29satisfaisabilité, 58satisfaisable, 15, 55, 57, 61solution entière, 59sous-matrice, 25système d'équations, 59système linéaire, 59Unit, 56Unit(F), 16unitaire, 14variable propositionnelle, 14viable, 81X-Horn, 28X-Horn-renommable, 28X-ordonnée, 103X-ordonnée-renommable, 103

120

Bibliographie[1] B. Aspvall. Recognizing disguised NR(1) instances of the satis�abi-lity problem. Journal of Alogrithms, 1 :97�103, 1980.[2] B. Aspvall, M. F. Plass, and R. E. Tarjan. A linear-time algorithmfor testing the truth of certain quanti�ed Boolean formulas. Informa-tion Processing Letters, 8(3) :121�123, Mar. 1979. See also erratum[3].[3] B. Aspvall, M. F. Plass, and R. E. Tarjan. Erratum : �A linear-timealgorithm for testing the truth of certain quanti�ed Boolean formu-las� [Inform. Process. Lett. 8 (1979), no. 3, 121�123. InformationProcessing Letters, 14(4) :195�195, June 1982. See [2].[4] E. Benoist and J.-J. Hébrard. Recognition of simple enlargedHorn formulas and simple extended Horn formulas. Technical Re-port 5, Université de Caen, Cahier du GREYC, Université de Caen(France), 1998.[5] K. S. Booth and G. S. Lueker. Testing for the consecutive onesproperty, interval graphs, and graph planarity using P-Q tree algo-rithms. J. Comput. System Sci., 13 :335�379, 1976.[6] E. Boros, Y. Crama, and P. L. Hammer. Polynomial-time inferenceof all valid implications for Horn and related formulae. Annals ofMathematics and Arti�cial Intelligence, 1 :21�32, 1990.[7] E. Boros, P. L. Hammer, T. Ibaraki, A. Kogan, E. Mayoraz, andI. Muchnik. An implementation of logical analysis of data. TechnicalReport 22-96, Rutcor Research Report, RUTCOR, Rutgers Centerfor Operations Research, Bush Campus, P.O. Box 5062, New Bruns-wick, New Jersey 08903-5062, July 1996.[8] E. Boros, P. L. Hammer, and X. Sun. Recognition of q-Horn for-mulae in linear time. DAMATH : Discrete Applied Mathematics andCombinatorial Operations Research and Computer Science, 55, 1994.[9] E. Can�eld and S. Williamson. A loop-free algorithm for generatingthe linear extensions of a poset. Order, 12 :1�18, 1995.121

Bibliographie[10] R. Chandrasekaran. Integer programming problems for which asimple rounding type of algorithm works. In e. W.R. Pulleyblank,editor, Progress in Combinatorial Optimization, pages 101�106. Aca-demic press Canada, Toronto, Ontario, Canada, 1984.[11] V. Chandru, C. Coullard, P. Hammer, M. Montanez, and X. Sun.On renamable Horn and generalized Horn functions. Annals of Ma-thematics, 1(1) :33�47, 1990.[12] V. Chandru and J. N. Hooker. Extended Horn sets in propositionallogic. Journal of the ACM, 38(1) :205�221, Jan. 1991.[13] C.-L. Chang and R. C.-T. Lee. Symbolic Logic and Mechanical Theo-rem Proving. Academic Press, New York, 1973.[14] M. Conforti and G. Cornuéjols. A class of logic problems solvable bylinear programming. In IEEE, editor, Proceedings of the 33rd AnnualSymposium on Foundations of Computer Science, pages 670�675,Pittsburgh, PN, Oct. 1992. IEEE Computer Society Press.[15] M. Conforti, G. Cornuejols, A. Kapoor, and K. Vu²kovi¢. Reco-gnizing balanced 0;�1 matrices. In Proceedings of the Fifth AnnualACM-SIAM Symposium on Discrete Algorithms, pages 103�111, Ar-lington, Virginia, 23�25 Jan. 1994.[16] S. A. Cook. The complexity of theorem-proving procedures. InConference Record of Third Annual ACM Symposium on Theory ofComputing, pages 151�158, Shaker Heights, Ohio, 3�5 1971 1971.[17] Crama, Ekin, and Hammer. Variable and term removal from booleanformulae. DAMATH : Discrete Applied Mathematics and Combina-torial Operations Research and Computer Science, 75, 1997.[18] N. Creignou and J.-J. Hébrard. On generating all solutions of genera-lized satis�ability problems. Informatique Théorique et Applications/ Theoretical Informatics and Applications, 31(6) :499�511, 1997.[19] M. Dalal. An almost quadratic class of satis�ability problems. InW. Wahlster, editor, Proceedings of the 12th European Conferenceon Arti�cial Intelligence, pages 355�359. John Wiley and Sons, 1996.[20] M. Dalal and D. W. Etherington. A hierarchy of tractable satis�abi-lity problems. Information Processing Letters, 44(4) :173�180, Dec.1992.[21] P. Dietz, M. Furst, and J. Hopcroft. A linear time algorithm for thegeneralized consecutive retrieval problem. Technical Report TR-79-386, Department of Computer Science, Cornell University, Ithaca,NY, 1979.122

[22] T. Eiter, T. Ibaraki, and K. Makino. On disguised double Hornfunctions and extensions. In 15th Annual Symposium on TheoreticalAspects of Computer Science, volume 1373 of lncs, pages 50�60, ParisFrance, 25�27 Feb. 1998. Springer.[23] T. Eiter, P. Kilpelainen, and H. Mannila. Recognizing renamablegenralized propositional Horn formulas is NP-complete. DiscreteAppl. Math., 59 :23�31, 1995.[24] S. Even, A. Itai, and A. Shamir. On the complexity of timetableand multicmmodity �ow problems. SIAM Journal on Computing,5 :691�700, 1976.[25] H. Farreny and M. Ghallab. Éléments d'intelligence arti�cielle. Édi-tions Hermès, 1987.[26] H. N. Gabow and E. W. Myers. Finding all spanning trees of directedand undirected graphs. SIAM Journal on Computing, 7(3) :280�287,Aug. 1978.[27] G. Gallo and M. G. Scutellà. Polynomially solvable satis�ability pro-blems. Information Processing Letters, 29(5) :221�227, Nov. 1988.[28] M. Habib, R. McConnell, C. Paul, and L. Viennot. Lex-BFS andpartition re�nement, with applications to transitive orientation, in-terval graph recognition and consecutive ones testing . TechnicalReport 96021, LIRMM, Montpellier, 1996. To appear in "Theoreti-cal Computer Science".[29] M. Habib, C. Paul, and L. Viennot. A synthesis on partition re�-nement : A useful routine for strings, graphs, boolean matrices andautomata. In Proc. STACS'98, pages 25�38, 1998.[30] R. Hariharan, S. Kapoor, and V. Kumar. Faster enumeration ofall spanning trees of a directed graph. In Proc. 4th Worksh. Algo-rithms & Data Structures, number 955 in Lecture Notes in ComputerScience, pages 428�439. Springer Verlag, 1995.[31] J.-J. Hébrard. A linear algorithm for renaming a set of clauses as aHorn set. Theoretical Computer Science, 124 :343�350, 1994.[32] J.-J. Hébrard and P. Luquet. The Horn basis of a set of clauses.Journal of Logic Programming, 34(1) :59�66, Jan. 1998.[33] D. S. Johnson, M. Yannakakis, and C. H. Papadimitriou. On genera-ting all maximal independent sets. Information Processing Letters,27(3) :119�123, Mar. 1988. 123

Bibliographie[34] A. D. Kalvin and Y. L. Varol. On the generation of all topologicalsortings. Journal of Algorithms, 4(2) :150�162, June 1983.[35] H. Kleine-Büning. On generalized Horn formulas and k-resolution.Theoretical Computer Science, 116(2) :405�413, Aug. 1993.[36] H. Kleine-Büning and T. Lettmann. Aussagenlogik : Deduktion undAlgorithmen. B. G. Teubner, Stuttgart, 1994.[37] H. Kleine-Büning and T. Lettmann. Propositional Logic : Deduc-tion and Algorithms. Cambridge University Press, The EdinburghBuilding, Shaftesbury Road, Cambridge CB2 2RU, UK, 1999.[38] H. R. Lewis. Renaming a set of clauses as a Horn set. Journal ofthe Association for Computing Machinery, 25(1) :134�135, january1978.[39] D. Loveland. Automatic Theorem Proving. Elsevier Science Publi-shers North-Holland, 1978.[40] D. Pretolani. Hierarchies of polynomially solvable sati�ability pro-blems. Annals of Mathematics and Arti�cial Intelligence, 17 :339�357, 1996.[41] G. Pruesse and F. Ruskey. Generating linear extensions fast. SIAM.J. Comp, page to appear, 1992.[42] R. Read and R. Tarjan. Bounds on backtrack algorithms for listingcycles, paths, and spanning trees. Networks, 5 :237�252, 1975.[43] E. Rich and K. Knight. Arti�cial Intelligence. McGraw-Hill, NewYork, second edition, 1991.[44] J. S. Schlipf, F. S. Annexstein, J. V. Franco, and R. P. Swamina-than. On �nding solutions for extended Horn formulas. InformationProcessing Letters, 54(3) :133�137, May 1995.[45] A. Shioura, A. Tamura, and T. UnoA. An optimal algorithm forscanning all spannig trees of an undirected graph. SIAM Journal onComputing, 26(3) : :678�692, 1997.[46] R. P. Swaminathan and D. K. Wagner. The arborescence-realizationproblem. Discrete Applied Mathematics, 59 :267�283, 1995.[47] R. E. Tarjan. Depth-�rst search and linear graph algorithms. SIAMJ. Computing, 1 :146�160, 1972.124

[48] S. Yamasaki and S. Doshita. The satis�ability problem for a classconsisting of Horn sentences and some non-Horn sentences in propor-tional logic. Information and Control, 59(1�3) :1�12, Oct./Nov./Dec.1983.

125

Bibliographie

126

RésuméNous nous sommes intéressés à l'étude des classes de formules CNFpropositionnelles pour lesquelles il est possible de générer tous les mo-dèles de façon e�cace (i.e. avec un délai polynômial entre chaque modèlegénéré).Nous proposons un algorithme générique permettant de générer tousles modèles d'une formule quelconque. Nous prouvons que pour les prin-cipales classes de formules pour lesquelles on sait résoudre le problèmeSAT e�cacement, notre algorithme génére les solutions avec un délai po-lynômial. Cette étude nous pousse à étudier ensuite plus en détail lesclasses de formules pour lesquelles la résolution unitaire est le seul outilutilisé pour la génération.C'est pourquoi nous nous intéressons aux formules Horn étendues in-troduites par Chandru et Hooker. Malheureusement, il n'existe pas encored'algorithme polynômial permettant de tester si une formule appartientà cette classe. Nous étudions donc la classe des formules Horn étenduessimples qui est une restriction de la classe pécédente pour laquelle Swami-nathan et Wagner ont proposé un algorithme de reconnaissance quadra-tique. Une étude de la structure de ces formules nous permet de proposerun algorithme de reconnaissance linéaire.Le résultat de plus original de ce travail est la présentation de laclasse des formules ordonnées. Cette classe étend de façon naturelle celledes formules de Horn, en préservant les propriétés relatives à la réso-lution unitaire (SAT, génération de modèles). De plus, nous proposonsun algorithme quadratique permettant de déterminer si une formule estordonnée-renommable. En outre nous présentons la classe des formulespresque ordonnées qui englobe les formules ordonnées-renommables. Cesformules peuvent être reconnues en temps polynômial et on peut aussigénérer leurs modèles en n'utilisant que la résolution unitaire, à conditionde disposer d'un ordre convenable sur les variables.Mots-clés: Logique propositionnelle, problème SAT, satisfaisabilité, gé-nération, délai polynomial, formules ordonnées, algorithmique, Horn, ré-solution unitaire. AbstractThis work deals with classes of propositional CNF formulas for whichit is possible to generate solutions e�ciently (i.e. with a polynomial delaybetween any two consecutive solutions).127

We present a generic algorithm for the generation of the models of anyformula. Then we show that our algorithm generates with polynomialdelay the models of any formula belonging to the main classes for which apolynomial algorithm for the satis�ability problem is known. This studyleads us to focus on classes of formulas for which unit resolution is theonly tool required for the generation.We study the class of extended Horn formulas introduced by Chandruand Hooker. Unfortunately, no polynomial time algorithm is known fordetermining whether a formula belongs to this class. That is why westudy the class of simple extended Horn formulas which is a subclassof the extended Horn formulas presented by Swaminathan and Wagner.They give a quadratic time recognition algorithm. Our study permits topresent a linear time recognition algorithm.But the most original result of this work is the presentation of theclass of ordered formulas. This class extends Horn on a natural way, pre-serving properties concerning unit resolution. (satis�ability, polynomialtime generation). Moreover, we propose a quadratic time algorithm forthe recognition of ordered-renamable formulas. Finally, we present theclass of almost ordered formulas which includes the ordered-renamablesformulas. These formulas can be recognized in polynomial time, and,provided that the variable are suitably ordered, one can generate withpolynomial delay the models of almost ordered formulas.Keywords: Propositionnal logic, problem SAT, satis�ability, genera-tion, polynomial delai, ordered formulas, algorithmic, Horn, unit resolu-tion.

128

