Université de Caen

Département d’informatique Ecole doctorale SIMEM
UFR. de Sciences

Génération a délai polynomial pour le
probleme SAT

THESE

présentée et soutenue publiquement le 19 janvier 2000

pour 'obtention du

Doctorat de I'université de Caen

(spécialité informatique)
par

Emmanuel Benoist

Composition du jury

Rapporteurs : Hans Kleine Biining Universitdat-Gesamthochschule Paderborn
Marie-Catherine Vilarem Université de Montpellier

Eraminateurs : Malik Ghallab LAAS Toulouse
Etienne Grandjean Université de Caen (co-directeur)
Jean-Jacques Hébrard Université de Caen (co-directeur)
Vangelis Paschos Université Paris-Dauphine

Groupe de Recherches en Informatique, Image, Instrumentation de Caen - CNRS UPRESA 6072

Mis en page avec la classe thloria.

Table des matiéres

Introduction générale 1
1 La problématique 1
1.1 Intelligence artificielle et logique 1
1.2 Le probléeme SAT 2
1.3 NP-complétude du probléme de satisfaisabilité 3
1.4 Formules de Horn et extensions 4
1.5 Génération a délai polynémial 6
2 Les résultats oL 7
2.1 Génération a délai polynémial 7
2.2 Formules Horn étendues (simples) 8
2.3 Formules ordonnées 9
Partie I Le probléme SAT et la génération a délai
polynomial 11
Chapitre 1
Introduction
1.1 Préliminaires 13
1.2 Définitions oo 14
1.3 Algorithme générique 16
1.4 Sur quelles formules appliquer cet algorithme 17
Chapitre 2
Utilisation de la résolution unitaire seule
2.1 Introduction o oL, 19

2.2 TFormulesde Horn 21

Table des matiéres

2.3 Formules Horn-renommables 21
2.4 Formules binaires L. 22
2.5 Formules équilibrées 0oL 25
2.6 Conclusion, 26

Chapitre 3

Générer en utilisant un ordre sur les variables

3.1 Introduction. L. 27
3.2 Formules presque Horn 28
3.3 Formulesq-Horn 35

Chapitre 4

Générer en utilisant les résultats sur SAT

4.1 Introduction 37
4.2 Formules Horn généralisées 37
4.3 Hiérarchies de Pretolani 39

Chapitre 5

Impossibilité de générer a délai polynoémial

5.1 Classes trivialement satisfaisables 43
52 Quad 44
5.3 Hiérarchies {Q} et {A}o oL 46

Chapitre 6

Conclusion

Partie I Formules Horn étendues 49

i

Chapitre 1

Présentation

Chapitre 2

Les formules Horn étendues

2.1 Présentation. 53
2.2 Deéfinitions H4

2.3 Satisfaisabilité et génération & délai polynémial . . . 55

24 Origine Lo e 58
2.4.1 Préliminaires 58
2.4.2 Théoréme de Chandrasekaran 59
2.4.3 Motivations des formules Horn étendues . . . 60
244 Exemple.o 61

2.5 Conclusion 00 oL 62

Chapitre 3

Les formules Horn étendues et élargies simples

3.1 Introduction. L. 63
3.2 Définitions 64
3.3 Satisfaisabilité et génération & délai polynémial . . . 66
34 Agrégats 67
3.5 Reconnaissance de formules Horn élargies simples . . 71
3.6 Calcul des arborescences acceptables 76
3.7 Reconnaissance des formules Horn étendues simples . 80
3.8 Uncasfacile 83
3.9 Calcul des arborescences viables 85

Chapitre 4

Conclusion

Partie III Formules ordonnées et presque ordon-

nées 91

Chapitre 1

Formules ordonnées

1.1 Présentation 93
1.2 Définitions oo 94
1.3 Satisfaisabilité et génération a délai polynémial . . . 95
1.4 Algorithme de reconnaissance 96
1.5 Formules ordonnées-renommables 97

il

Table des matiéres

Chapitre 2

Formules presque ordonnées

2.1 Présentation. L.
2.2 Génération a délai polynémial

2.3 Reconnaissance des formules presque ordonnées

Conclusion et Perspectives

Index

Bibliographie

v

115

119

121

1.1
2.1
4.1
6.1

2.1
2.2

2.3
2.4

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

1.1
1.2
1.3

2.1

Table des figures

Algorithme génération 17
Graphe d’implicationde F5 24
Algorithme PSAT L. 41
Génération a délai polynémial : tableau provisoire 47
La clause 'y est Horn étendue par rapport aT° 55
Arborescence T' dont les arcs sont étiquetés par les va-

riablesde Fy 55
Fy est Horn étendue par rapport a 7' 56
Noyau(Fy) est Horn étendue par rapport a 7" 57
Arborescence T' Lo 65
Arborescence T' Lo 66
Forét associée aux agrégats de Fo 70
Procédure OrderPos 71
T': Une arborescence acceptable pour A; 73
Construction de R(¢) 74
T est une réalisation arborescente de & 76
Procédure Construit Contraintes 79
Procédure Construit Contraintes 1 86
Procédure Inclusiono 97
Graphe G(Fy) . . . o o oo oo oo 99
Procédure Construit-G(F) 102
Graphe G(Gy) o o 106
Génération a délai polynémial 116
Graphe d’inclusion des principales classes étudiées dans

cette thése 117

Table des figures

vi

Introduction générale

1 La problématique

1.1 Intelligence artificielle et logique

La logique a été trés étudiée au fil des siécles, que ce soit par les
philosophes ou les mathématiciens, et maintenant par les informaticiens.
Dans cette thése, nous nous sommes intéressés plus particuliérement a
I’aspect symbolique de la logique. Nous voulons utiliser la logique sym-
bolique pour modéliser et résoudre des problémes difficiles (et souvent
méme impossibles) & résoudre pour un étre humain.

En informatique, la logique symbolique est particuliérement utilisée
en Intelligence Artificielle [13, 25, 43], elle semble en effet pouvoir mo-
déliser un grand nombre de phénomeénes. Durant la seconde moitié des
années 1960 I'Intelligence Artificielle a beaucoup profité des progres faits
dans le domaine de la démonstration automatique. L’intérét pour la dé-
monstration automatique était dit pour une part a la prise de conscience
de ce que les déductions logiques sont une part importante de I'intelli-
gence humaine, mais aussi aux techniques de démonstration automatique
de théorémes mises au point a la fin des années 1960. En paralléle aux
progrés techniques sur la démonstration automatique de théorémes, on
trouve les progrés dans ’application de ces techniques pour résoudre di-
vers problémes de 'intelligence artificielle.

Durant les années 70, les systémes experts ont popularisé les systémes
a bases de régles. De nombreux systémes de résolution de problémes
concrets ont ainsi pu étre construits. Le principe de ces systémes est de
recueillir les connaissances d’un expert d’un domaine bien précis, pour
en faire des régles. Ces régles sont ensuite appliquées aux cas qui doivent
étre étudiés.

Depuis quelques années, une autre utilisation de la logique est faite
par les chercheurs en Intelligence Artificielle [7, 17, 22]. On utilise de nou-
veaux résultats en logique (principalement propositionnelle) pour construire
des systémes de résolution de problémes basés non plus sur des régles sai-
sies par un expert, mais sur le résultat d’observations passées. On se sert
ici des résultats passés pour construire des régles qui servent & prédire le
futur. Par exemple Boros et al. [7] présentent le systéme LAD (Logical

1

Introduction générale

Analysis of Data) qui permet de classifier de nouvelles observations, de fa-
con que cette classification soit cohérente avec celle des observations pas-
sées. Les informations utilisées par ce systéme consistent en une archive
des observations passées et de leur classification. Ce type de systémes
permet de résoudre des problémes concrets. Les banques peuvent s’en
servir pour déterminer si elles accordent ou non un crédit & quelqu’un,
elles se servent dans ce cas des informations sur ’age, la profession, les
revenus des personnes. Les médecins peuvent s’en servir pour déterminer
le caractére malin d’une tumeur, en utilisant des parameétres telles que
la taille des cellules, ’age du patient, la couleur des cellules ...

Le développement de 'intelligence artificielle et en particulier du Data
Mining semble donc lié aux recherches qui sont effectuées sur les aspects
théoriques de la logique, et en particulier sur la logique propositionnelle.

1.2 Le probléme SAT

Dans cette thése, nous nous intéressons a la logique propositionnelle,
et plus précisément au probléme central de cette logique qui est I’étude
de la satisfaisabilité d’une formule donnée.

Nous allons maintenant considérer un exemple trés simple pour mon-
trer comment la logique propositionnelle peut étre utilisée pour modéli-
ser des problémes. Comme nous n’avons pas encore défini les notions de
bases, le lecteur devra pour le moment se référer a son intuition.

Nous allons étudier les faits suivants:

1. Je n’arrive pas en retard au bureau;

2. Sije me léve tard et que je ne roule pas vite, alors j’arrive en retard
au bureau ;

3. Sije me léve tard et que je roule vite, alors je ne suis pas en retard
au bureau ;

4. Si je roule vite, et que la police fait un contréle de vitesse, alors je
n’ai plus de permis;

5. Je dois garder mon permis.

On recherche une situation dans laquelle tous ces faits sont vérifiés.
Comme ces faits sont donnés en francais, nous avons a les représenter
avec des symboles. On va décrire L 'action «Je me léve tard», A 'ac-
tion «J’arrive en retard au bureau», R «Je roule vite», Po «La police
effectue un controle de vitesse» et Pe «Je garde mon permis». Toutes
ces variables peuvent prendre la valeur Vrai ou la valeur Faux. De plus,

1. La problématique

nous avons besoin de quelques symboles logiques A représente ET. V re-
présente OU, — représente NON et — représente IMPLIQUE. Les faits
énoncés ci-dessus peuvent donc se traduire de la maniére suivante.

1. -A

2. LA-R— A
3. LAR— -A
4. RN Po— —Pe

5. Pe

A P’aide de regles de transcriptions, on peut transformer cette formule
en une formule ne contenant qu’une conjonction de clauses, ou chaque
clause est elle méme une disjonction de symboles, précédés ou non de la
négation. Cela nous donne une formule en Forme Normale Conjonctive

(CNF en anglais).
1. =A
2. -LVRVA
3. =LV -RV-A
4. "RV —~PoV —Pe

5. Pe

Résoudre le probléme de la satisfaisabilité d’une formule (dit probléme
SAT) revient & regarder s’il est possible de trouver une valeur a chacun
des symboles de telle facon que toutes les clauses soient vérifiées en méme
temps. Ici, une des solutions possibles est . = faux, A = fauzr, R =
vrai, Po = faux, Pe = vra:. Elle signifie: Je ne me léve pas en retard,
je n’arrive pas en retard, je roule vite, la police n’est pas la et je garde
mon permis. Cette solution vérifie les contraintes posées, mais elle n’est
pas satisfaisante (il est stupide de se lever tot et de rouler vite tout de
méme).

1.3 NP-complétude du probléme de satisfaisabilité

La logique propositionnelle peut donc étre utilisée pour modéliser de
trés nombreux problémes. Malheureusement, il n’est actuellement pas
possible de résoudre efficacement tous ces problémes. Il n’existe pas d’al-
gorithme polynémial pour résoudre le probléme de la satisfaisabilité d’une
formule quelconque. Cook [16] a de plus prouvé, que dans la classe de
tous les problémes dont on peut tester une solution en temps polynémial

Introduction générale

(la classe NP), le probleme de la satisfaisabilité fait partie des problémes
les plus difficiles (qui sont appelés NP-complets). Si on connait un algo-
rithme efficace pour résoudre le probléme de satisfaisabilité, alors il est
possible de construire des algorithmes efficaces pour tous les problémes

de la classe NP.

1.4 Formules de Horn et extensions

Déterminer la satisfaisabilité d’une formule est un probléme difficile
dans le cas général, il est utile d’étudier des classes de formules pour
lesquelles le test de satisfaisabilité peut se faire en temps polynémial
[36, 37]. Parmi ’ensemble des classes pour lesquelles on connait un al-
gorithme polynémial pour résoudre le probléme SAT, la plus importante
est sans doute la classe des formules de Horn. Il s’agit des formules en
forme normale conjonctive dont chaque clause contient au plus un littéral
positif.

Par exemple F = {{—xy, 29, a4}, {721, 723}, {z5}} est une formule
de Horn.

Le test de satisfaisabilité d’une formule de Horn est basé sur la mé-
canique bien connue de la résolution unitaire. On remarque que si une
formule F contient la clause unitaire {a} (resp. {—x}), alors la seule va-
leur possible pour x est vrai (resp. faux), on peut donc simplifier F en
affectant cette valeur a la variable x. On définit F, (resp. F,) comme la
formule F dans laquelle on a effacé toutes les clauses contenant @ (resp.
—x) et telle que —x (resp. x) est 6té de toutes les clauses qui le conte-
naient. Ces simplifications de F correspondent aux simplifications que
I'on fait lorsque I'on affecte la valeur vrai (resp. faux) a la variable x. On
peut aisément prouver que si la formule F contient la clause {x} (resp.
{—a}), F sera satisfaisable si et seulement si, la formule F, (resp. F-;)
est satisfaisable et ne contient pas la clause vide.

Par exemple si F = {{xy, 22}, {~x1, 23}, {xq,25}}, alors F,, =
Hash, {2, 251}

Si on répete cette simplification (F, contient peut-étre une clause
unitaire), on obtient une formule dont toutes les clauses sont de longueur
deux au moins. On va appeler cette formule Noyau(F). F est satis-
faisable, si et seulement si Noyau(F) est satisfaisable et la résolution
unitaire n’a pas généré de clause vide. Ce processus peut étre effectué en
temps linéaire pour toute formule F.

Pour les formules appartenant & la classe Horn, la résolution unitaire
est suffisante pour déterminer la satisfaisabilité de F. En effet, Noyau(F)
(dont toutes les clauses sont de longueur supérieure ou égale a deux) est
satisfaisable puisque si on donne la valeur faux a toutes les variables de
cette formule, toutes les clauses sont satisfaites (chacune est moins de
longueur 2 et contient au plus un littéral positif, donc chacune contient
au moins un littéral négatif). Tester la satisfaisabilité d’une formule Horn,

4

1. La problématique

revient donc a tester si la résolution unitaire sur cette formule a généré
la clause vide.

Le renommage d’une formule F est obtenu en choisissant un ensemble
de variables U et en remplacant pour tout & € U les occurrences de x par
—x et les occurrences de —x par x. L’intérét de cette manipulation vient
de ce qu’elle ne change pas la satisfaisabilité de la formule, ni méme le
nombre de solutions; si la formule originale admet un modéle, alors la
formule renommeée admet comme modéle le modéle de la formule originale
renommeé.

Si on peut trouver un renommage qui transforme une formule F en
une formule appartenant a une classe polynémiale, alors on peut tester la
satisfaisabilité de F en temps polynémial. Pour la classe Horn, il existe
des algorithmes linéaires |31, 38] permettant de tester si une formule peut
se renommer en une formule de Horn.

D’autres extensions ont été proposées autour des formules de Horn.
Chandru et Hooker [12] ont présenté la classe des formules Horn éten-
dues, pour laquelle le test de satisfaisabilité est exactement le méme que
pour les formules de Horn, c’est a dire uniquement basé sur la résolution
unitaire. Malheureusement, il n’existe actuellement aucun algorithme po-
lynémial permettant de tester si une formule est Horn étendue. C’est
pourquoi, Swaminathan et Wagner [46], ont présenté les formules Horn
étendues simples qui elles aussi admettent le méme algorithme pour tes-
ter si une formule est satisfaisable, mais pour laquelle ils donnent un
algorithme de reconnaissance qui est quadratique. Conforti et Cornuéjols
[14, 15] ont présenté les formules équilibrées qui étendent elles aussi les
formules de Horn. Pour les formules équilibrées, le test de satisfaisabilité
se fait aussi de la méme facon que pour les formules de Horn, a 'aide de
la résolution unitaire.

Les formules de Horn ont aussi été étendues dans d’autres directions.
Par exemple Yamasaki et Doshita [48] ont défini une classe de formules
appelées depuis Horn généralisées. Kleine Biining [35] a donné un test
de satisfaisabilité pour cette classe basé sur la 2-résolution et dont la
complexité est quadratique. Gallo et Scutella [27] ont étendu cette classe
en une hiérarchie: les classes I'y (k > 1). Kleine Biining [35] a prouvé que
I'on peut tester la satisfaisabilité d’'une formule appartenant & la classe
I'; en utilisant la (¢ 4+ 1)-résolution. Malheureusement, Eiter et al. [23]
ont prouvé que tester si une formule est I',-renommable est NP complet
pour tout k supérieur au égal & 1.

D’autres classes étendent les formules de Horn. On peut citer les hié-
rarchies {Q} et {A} présentées par Dalal et Etherington [20] ainsi que
la classe Quad présentée par Dalal [19], mais les méthodes utilisées pour
tester la satisfaisabilité de ces formules sont spécifiques a ces classes et
sont éloignées de celles utilisées pour Horn.

Introduction générale

1.5 Génération a délai polynomial

Générer toutes les solutions qui satisfont un ensemble de contraintes
est un probléme trés étudié en algorithmique combinatoire. Par exemple
la théorie des graphes offre de nombreux problémes intéressants a étudier
de ce point de vue. Johnson et al [33] ont étudié la génération d’ensembles
maximaux indépendants. Read et Tarjan [42], Gabon et Myers [26] ou
Shioura et al. [45] se sont intéressés aux arbres couvrants des graphes
non orientés. Hariharan et al. [30] ont quant & eux étudié la génération
des arbres couvrants des graphes orientés. Kalvin et Varol [34], Pruesse
et Ruskey [41] ou Canfield et Williamson [9] ont étudié comment on
pouvait générer efficacement tous les tris topologiques pour un ordre
partiel donné.

Il a fallu trouver une nouvelle notion pour décrire la complexité de
tels algorithmes. En effet, dans les cas les plus intéressants, le nombre de
solutions & générer est potentiellement exponentiel en fonction de la taille
de la donnée. C’est le cas pour les ensembles maximaux indépendants ou
pour les solutions d’une formule de logique propositionnelle. La notion de
performance que nous utiliserons dans cette thése devra tenir compte de
cette remarque. Johnson et al [33] ont proposé une notion de complexité,
qu’ils ont appelée génération a délai polynomial.

Un algorithme génére les solutions d’un probléme a délai polynémial,
s’il géneére toutes les solutions, les unes & la suite des autres, de telle
fagon que le délai avant la premiére solution, ensuite entre deux solutions
consécutives, et aprés la derniére solution, est borné par un polynéme en
fonction de la taille de la donnée.

Johnson et al [33] ont proposé un algorithme de génération a délai
polynémial de tous les ensembles maximaux indépendants d’un graphe.
Creignou et Hébrard [18] ont étudiés la génération a délai polynémial de
toutes les solutions de certaines classes du probléeme SAT généralisé.

Pour le probléme de la satisfaisabilité d’une formule de logique pro-
positionnelle, trouver une solution est déja difficile, (exponentiel dans le
cas le pire). Les chercheurs se sont donc concentrés sur certaines classes
de formules pour lesquelles ils ont proposé des algorithmes polynémiaux
permettant de tester la satisfaisabilité et le plus souvent de retourner une
solution. Nous allons dans cette thése étudier la plupart de ces classes et
voir celles pour lesquelles la génération & délai polynémial est possible.
Dans la partie I, nous allons considérer les principales classes polyno-
miales connues et voir comment on peut adapter ces résultats pour la
génération de toutes les solutions a délai polynémial. Dans les parties 11
et I1I, nous étudions plus en détail la classe des formules Horn étendues,
et la nouvelle classe des formules ordonnées. Pour ces classes, on prouve
que la résolution unitaire suffit a générer efficacement toutes les solutions.

Dans I’exemple que nous avons présenté a la section 1.2, la solution qui
est présentée n’est pas satisfaisante, se lever t6t et tout de méme rouler

2. Les résultats

vite, ne semble pas trés intelligent. L’utilisateur de notre systéme peut
donc demander a voir successivement toutes les autres solutions. Nous
avons quatre solutions possibles: La premiére consiste a rouler vite, il n’y
a pas de police et se lever tard. La seconde est la méme sauf que 'on se
léve t6t. La troisiéme consiste & ne pas rouler vite, ne pas se lever tard,
et la police effectue son contréle de vitesse. La quatriéme est la méme
mais la police n’effectue pas de contréle. La connaissance de toutes les
solutions nous permet donc de choisir la meilleure option. Cela laisse a
I'utilisateur le choix, ce qui peut étre trés important pour un systéme
expert de ce type.

2 Les résultats

2.1 Génération a délai polynoémial

Dans la partie I, nous exposons un algorithme trés simple pour gé-
nérer tous les modeéles d'une formule. Ensuite, nous étudions la plupart
des classes polynoémiales connues et regardons si on peut utiliser notre
algorithme pour générer toutes les solutions des formules appartenant a
ces classes. En étudiant les propriétés de la résolution unitaire, on peut
prouver que notre algorithme génére toutes les solutions avec un délai
O(nN) (ot n est le nombre de variables dans la formule et NV la longueur
totale de la formule, ¢’est a dire la somme des longueurs des clauses) pour
les formules Horn, Horn renommables et binaires (dont toutes les clauses
sont de longueur deux) ainsi que pour les formules équilibrées introduites
par Conforti et Conuéjols [14, 15].

Ensuite, nous étudions la classe des formules presque Horn qui est
issue des travaux de Hébrard et Luquet sur la base de Horn [32]. Nous
prouvons que si on prend la peine de pré-calculer un ordre sur les variables
d’une telle formule (ce qui peut étre fait en temps O(nN)), alors on peut
générer tous ses modéles avec un délai O(nN) avec pour seul outil la
résolution unitaire. On peut ensuite utiliser ce résultat pour démontrer
la possibilité de générer a délai O(nN) les solutions des formules de la
classe q-Horn.

Nous étudions ensuite les classes de formules pour lesquelles la réso-
lution unitaire ne suffit pas pour générer toutes les solutions. On utilise
dans ce cas les résultats établis pour résoudre le probléme de la satisfai-
sabilité des formules de ces classes. Nous présentons un algorithme pour
générer toutes les solutions d’une formule appartenant a l'une des classes
['y (k> 0) (présentées par Gallo et Scutella [27] & partir d’une classe dé-
crite par Yamasaki et Doshita [48]) avec un délai O(n*N). Le méme type
de méthode peut étre appliqué pour générer & délai polynémial les solu-
tions des formules appartenant aux classes faisant partie des hiérarchies
présentées par Pretolani [40].

Introduction générale

Nous prouvons par contre que pour la classe Quad présentée par Dalal
[19], ainsi que pour les classes appartenant aux hiérarchies {2} et {A},
présentées par Dalal et Etherington [20], si P£NP, il est impossible de
trouver un algorithme a délai polynémial pour générer toutes les solutions
de ces formules.

2.2 Formules Horn étendues (simples)

Les parties II et 111 sont consacrées a 1’étude de classes pour lesquelles
la résolution unitaire est le seul moteur utilisé pour la génération de
toutes les solutions.

Dans la partie II, nous étudions les propriétés des formules Horn éten-
dues présentées par Chandru et Hooker [12] et ensuite étudiées par Swa-
minathan et Wagner [46] ainsi que Schlipf et al. [44]. Nous présentons
tout d’abord les formules Horn étendues. Une formule F est dite Horn
étendue, s’il existe une arborescence dont les arcs sont étiquetés de ma-
niére unique par les variables de F et telle que: pour chaque clause de la
formule, les variables apparaissant positivement dans la clause, forment
un chemin dans D'arborescence, et les variables apparaissant négative-
ment dans cette méme clause forment des chemins disjoints commencant
tous & la racine de I’arborescence plus un chemin commencant au méme
sommet que le chemin positif. Nous étudions dans cette these 'origine de
cette définition et aussi comment il est possible de générer a délai O(nN)
tous les modeles d’une telle formule. Malheureusement, il n’existe pas ac-
tuellement d’algorithme polynémial permettant de tester si une formule
donnée appartient ou non a la classe Horn étendue.

C’est la raison de la création des formules Horn étendues simples par
Swaminathan et Wagner [46]. Is ont remarqué que si on simplifie un peu
la définition donnée par Chandru et Hooker, on peut obtenir une classe
de formules gardant les mémes propriétés: on peut tester la satisfaisa-
bilité en temps linéaire. Nous montrons que 1’on peut générer tous les
modeles avec un délai O(nN). Ils proposent un algorithme quadratique
pour tester si une formule appartient ou non & leur classe. Nous étu-
dions cette classe, et mettons en avant une structure intrinséque a toute
formule. Il s’agit d’une partition de I’ensemble des variables en classes
d’équivalences appelées agrégats. Fnsuite, nous étudions les agrégats des
formules Horn étendues simples et découvrons des relations a 'intérieur
de ces agrégats et entre ces agrégats. Cela nous permet de construire un
algorithme linéaire pour la reconnaissance des formules Horn étendues
simples. Cela nous permet aussi de proposer un algorithme linéaire pour
la reconnaissance des formules de la classe Horn élargie simple que nous
avons créée a la suite d’une remarque de Schlipf et al. [44].

2. Les résultats

2.3 Formules ordonnées

Dans la partie III, nous présentons une nouvelle classe de formules,
les formules ordonnées. La classe des formules ordonnées étend, d’une
fagon trés naturelle, la classe des formules de Horn, et tout comme celles
de Horn, elles possédent de trés nombreuses propriétés intéressantes.

On peut tester si une formule est ordonnée en temps O(nN). Soit F
une formule ordonnée, il est possible de déterminer si F est satisfaisable
avec un algorithme linéaire basé uniquement sur la résolution unitaire.
On peut générer tous les modéles de F avec un délai O(nN).

Mais la ot cette classe est particuliérement intéressante, c’est que ’on
peut tester en temps O(nN) si une formule F est ordonnée-renommable,
c’est a dire, s’il existe un ensemble X de variables tel que si on remplace
les occurrences de x par —x et les occurrences de - par = pout tout x €
X, on transforme F en une formule ordonnée. Cette propriété n’est pas
triviale, puisque par exemple tester si une formule peut étre renommeée en
une formule de la classe ['y (pour tout k > 1) est au contraire NP-complet
[23].

Comme le test de renommage utilise les mémes techniques que pour
les formules de Horn, on peut étendre les résultats obtenus par Hébrard
et Luquet [32] sur la base de Horn et développés dans cette thése avec
la définition et I’étude des formules presque Horn (Partie I). On peut
ainsi définir la classe des formules presque ordonnées. Nous présentons en
outre une méthode pour générer tous les modéles d’une telle formule qui
est trés similaire & la méthode proposée pour générer les modeéles d’une
formule presque Horn présentée dans la Partie 1. Sous réserve de disposer
d’un ordre sur les variables (qui peut étre calculé en temps O(nN)), notre
algorithme peut générer tous les modéles d’une formule presque ordonnée
en n’utilisant que la résolution unitaire.

Introduction générale

10

Premiére partie

Le probléeme SAT et la
génération a délai polynomial

11

Chapitre 1

Introduction

Sommaire
1.1 Préliminaires . . . « v v v v v v v v v v o 13
1.2 Deéfinitions . . « v v v v v v v v e e e e 14
1.3 Algorithme générique 16

1.4 Sur quelles formules appliquer cet algo-
rithme, 17

1.1 Préliminaires

Le probléeme de satisfaisabilité d’une formule de logique proposition-
nelle est un des problémes centraux de l'informatique théorique. Il s’agit
de trouver pour une formule donnée si oui ou non, il existe une solution
pouvant rendre cette formule vraie.

Cook [16] a prouvé que tout probléme de la classe NP (i.e. dont on
peut tester si une donnée est solution en temps polynoémial) pouvait se
réduire en une instance du probléme de satisfaisabilité. Depuis, de trés
nombreux problémes ont été prouvés étre de complexité équivalente au
probléme SAT et ils forment la classe des problémes NP-complets.

L’utilisation de formules de logique propositionnelle est trés utile, par
exemple en intelligence artificielle. Ces formules peuvent étre utilisées
pour faire de la démonstration automatique. On peut aussi voir les sys-
témes de déduction & base de régles comme une application du probléme
SAT. La montée en puissance du Data Mining, a bien montré I'intérét
pratique de I’étude de la complexité des algorithmes et la maitrise de
cette complexiteé.

Nous allons étudier dans cette partie et dans cette thése une extension
du probléme de satisfaisabilité d’une formule de logique propositionnelle :
«la génération de toutes les solutions qui satisfont une formule ceci & délai
raisonnable».

13

Chapitre 1. Introduction

En effet les utilisateurs de systémes en Intelligence Artificielle, ne se
contentent pas de savoir qu'une réponse existe, ils veulent la connaitre. Si
celle-ci ne leur convient pas, ils veulent en connaitre une autre, puis peut-
étre une troisieme. De plus entre deux réponses consécutives, le temps
doit étre borné par un délai polynémial.

Johnson et al. [33] ont présenté une notion de complexité qui s’adapte
bien a ce type de probléemes. Comme le nombre des solutions peut étre
exponentiel, il est impossible de définir une complexité dépendant uni-
quement du temps d’exécution total de I'algorithme. C’est pourquoi ils
ont défini la notion de délai polynémial. Le temps avant la premiére solu-
tion, entre deux solutions et pour dire qu’il n’existe pas d’autre solution
doit étre borné par un polynéme en fonction de la taille de la formule.

Nous présentons ici un algorithme qui permet de générer a délai po-
lynémial toutes les solutions de certaines formules. On prouve ensuite
que cet algorithme fonctionne avec les formules appartenant & presque
toutes les classes pour lesquelles on peut tester la satisfaisabilité en temps
polynémial.

1.2 Définitions

On va définir ici les principaux concepts et notations qui seront utilisés
tout au long de cette these.

Rappelons ici qu'un littéral est soit une variable propositionnelle
(littéral positif), soit sa négation —x (littéral négatif). Une clause est un
ensemble fini de littéraux. Si une clause C' contient au plus un littéral
positif, C' est appelée clause de Horn, et si card(C') = 1, on dit que
C' est une clause unitaire. Une formule est un ensemble fini de clauses.
Tout au long de cette these, F désignera une formule, V = {ay,...,2,}
son ensemble de variables et N = Ycecrcard(C). Dans la Partie 11, nous
utiliserons la notation F' pour représenter une formule. F est une formule
de Horn si toutes ses clauses sont des clauses de Horn.

Exemple: Soit F; = {C,C5, Cs,Cy, Cs, Cq, Cr, Cs}, avec O = {—ay,
Xy, Ty, x5, "x7}, Oy = {nwy, nxy, sz}, O3 = {—ay, nay, ~as}, Cf =
{x1, 2, 23, "5, "we}, Cs = {ws, 27}, Cg = {a6}, Cr = {2, 23} F; est

une formule et C5 en est la troisiéme clause.

Soit x une variable et [un littéral. Si on a [= = ou [= —z, on note
var(l) = x. Si | = x (vesp. [= —=z), on écrit [= =z (resp. | = x). Soit
L un ensemble de littéraux. On écrit L I'ensemble {I | [€ L}. L est
cohérent s’il ne contient pas a la fois [et [quelque soit le littéral {, sinon
il est incohérent.

Soit X C V. Lit(X) représente I'ensemble des littéraux définis sur
X, ie. Lit(X) = X U{~x | 2 € X}. Si C C Lit(X), on dit que C

est une clause sur X. Un ensemble de littéraux L est complet pour X si

14

1.2. Définitions

LUL = Lit(X). L est complet pour une formule s’il est complet pour V'
si V désigne 'ensemble des variables de la formule.

On dit qu’on renomme x dans F si on remplace toute occurrence
de z par -z et toute occurrence de —x par z. Un renommage est un
ensemble de littéraux qui est complet et cohérent. Soit R un renommage
et @ € V une variable, on a R(x) = 2 et R(—a) = —a si @ € R (x n’est
pas renommé), on a aussi R(x) = —a et R(—x) = x si ~x € R (x est
renommé). On remarque que pour tout renommage R, et tout littéral [,
R(l) est un littéral positif, si et seulement si [€ R. Pour toute clause C,
R(C') décrit ’'ensemble {R(l) | [€ C'}. De méme pour toute formule F,
on aura R(F) ={R(C)|C € F}.

Exemple: Soit R = {—x1, a9, 723, &4, 5, Ts, 7 } un renommage. R(Fy) =
{1, 29, 24, x5, ~r}t, {2y, 9, 23}, {21, "2y, ~as}, {2y, 20, "3, w5, "6},

{_'x67 1}7}, {xG}v {—'1}2, —'1}3}}.

F est dite satisfaisable s’il existe un ensemble de littéraux cohérent
L tel que pour toute clause C € F, C N L # 0. Soit M un ensemble
cohérent et complet. M est un modéle de F si pour toute clause C' € F,
CNM=£D.
Exemple: L’ensemble de littéraux M = {—xy, 2y, 23, x4, 5, 6, 27} est
un modéle de la formule F;.

Soit C' une clause, on notera pos(C') 'ensemble {x € V | 2 € C},
et neg(C') Uensemble {o € V | mz € C'}. Soit x une variable, on note
CNeg(x) 'ensemble {C € F | mx € C} (clauses contenant —x), et
C'Pos(z) 'ensemble {C' € F | x € C'} (clauses contenant). Soit [un
littéral, on écrit Occr(l) 'ensemble {C' € F | I € C'} des clauses de F
contenant [; lorsqu’aucune confusion ne peut étre faite, on note cet en-
semble Oce(x). On peut remarquer que C' Pos(xz) = Oce(x) et CNeg(x) =
Oce(—x). Si C est un ensemble de littéraux, on note var(C) I'ensemble
{z € V|2 € Cou—a € C}, pour toute formule G = {C,...,Cr} on
note var(G) = var(Cy) U... Uvar(Cy).

Exemple: Pour la formule F; définie ci-dessus, pos(Cy) = {4, x5},
pos(Cq) =0, neg(Ch) = {x1, x2, 27}, CNeg(xy) = {Cy,Cs, Cs},
CPos(xy) ={C4, Cr}, Oce(—as) = {Cs}.

Soit x une variable et [un littéral, on note F\a = {C\z, -z | C € F}
et i ={C\{l} | CeF,l¢C}.
Exemple: On a Fi \ @1 = { {—wq, x4, x5, ~ar}, {2, ~as}, {ag, ~as},
{22, 3, mas, ~we}, { w6, 7}, {6}, {22, 23} et (Fl)—'l’z = { {~a1, n2y, ~as},

{x1, 23, a5, ~wg}, {-xe, 27}, {6}, {23}}.

On dit qu'une clause C' est dérivable de F par résolution unitaire sl
existe une suite de clauses (4, ..., (), avec C, = C telle que pour tout
i (1 <@ < p);ou bien C; € F ou bien il existe j,k < ¢ et un littéral

15

Chapitre 1. Introduction

[vérifiant C; = C; U {l} et Cyx = {I}. Soit ¢ = (Cy,...,C,), o est une
dérivation unitaire.

Soit Unit(F) 'ensemble des clauses unitaires dérivables de F par
résolution unitaire.

On sait que si Unit(F) n’est pas cohérent alors F est non satisfaisable.
La réciproque est en général fausse.

Soit Noyau(F) I’ensemble des clauses obtenues a partir de F en 6tant
les clauses qui contiennent un élément de Unit(F), et en supprimant dans
les clauses restantes tous les complémentaires des littéraux de Unit(F).
Exemple: En reprenant la formule F; de ’exemple ci-dessus, on obtient :
Unit(Fi) = {xe, x7} et Noyau(Fy) = {{~x1, ~wa, 24, x5}, {21, "2, ~23},

{man, —aa, mast, {an, w2, 25, mast, {2z, wst}
La proposition suivante est le rappel d’un résultat de base [39].

Proposition 1 F est satisfaisable si et seulement si Unit(F) est cohé-
rent et Noyau(F) est satisfaisable.

Preuve: Si F est satisfaisable, alors évidemment Unit(F) est cohérent
et Noyau(F) est satisfaisable. Maintenant supposons que Unit(F) est co-
hérent et Noyau(F) est satisfaisable. Soit My un modeéle de Noyau(F),
I’ensemble My U Unit(F) est un modele de F. O

Il est bien connu que I'ensemble Unit(F) et la formule Noyau(F)
peuvent étre calculés en temps O(N) (voir [20] par exemple).

Par abus de notation, on utilisera parfois la notation ¢/ dans laquelle
U est un ensemble de littéraux pour représenter I’ensemble de clauses

unitaires U' = {{l} | | € U}.

1.3 Algorithme générique

Nous présentons ici un algorithme pour la génération & délai polyné-
mial des modéles pour les formules de la plupart des classes polynémiales
connues.

Proposition 2 Si pour tout ensemble de littéraux U, on peut tester en
temps O(f(N)) si FUU est satisfaisable, alors on peut générer les mo-
deles de F a délai O(nf(N)).

Preuve: Nous allons utiliser I'algorithme Génération (Fig.1.1) pour gé-
nérer tous les modéles de F. Pour tout couple (U, i) empilé dans P, il
existe au moins un modéle satisfaisant F U U qui contient U, sinon F U U
ne serait pas satisfaisable, et donc ne serait pas empilé. Donc, si cet algo-
rithme retourne un ensemble de littéraux, on est siir que cet ensemble est
un modeéle de F. Comme cet algorithme examine implicitement tous les

16

1.4. Sur quelles formules appliquer cet algorithme

Algorithme Génération
Entrée: Une formule F, satisfaisant le conditions de la proposition 2;
et une permutation (xy,...,x,) des variables de F;
Sortie: Les modeéles de F';
début
Pile P < ()
si F est satisfaisable alors P.empiler (), 1)
tant que P # () faire
(U, 1) « P.dépiler();
sii=n+ 1 alors sortir(i/)
sinon
si FUU U {{x;}} est satisfaisable alors
Pempiler(U U {{x;}},1+1);
fin si;
si FUUU{{—x;}} est satisfaisable alors
P.empiler(U U {{—z;}},i+1);
fin si;
fin sinon;
fin tant que;
fin.

FiG. 1.1 — Algorithme génération

ensembles de littéraux cohérents et complets pour V', on peut conclure
que cet algorithme génére tous les modéles de F.
Le délai entre deux modéles consécutifs est polynémial :

— lors de chaque exécution de la boucle «tant que», soit un modéle
est généré, soit la valeur de ¢ au sommet de la pile est augmentée
de 1, le nombre de boucles entre deux générations est donc borné
par n.

— Le cotit du test de satisfaisabilité est O(f(N)).

La complexité totale de cet algorithme est donc: O(nf(N)). O

1.4 Sur quelles formules appliquer cet algo-
rithme

L’algorithme que nous avons présenté ici fonctionne avec presque
toutes les classes de formules connues. Nous allons maintenant voir quels
sont les mécanismes qui font que si on connait un algorithme polynémial

17

Chapitre 1. Introduction

pour tester la satisfaisabilité d’une formule, alors, la plupart du temps,
on peut générer toutes les solutions de cette formule avec un délai poly-
némial.

Au Chapitre 2 nous allons étudier un ensemble de classes, telles que les
formules de Horn, Horn renommables, binaires ou les formules équilibrées
introduites par Conforti et Conugjols [14, 15]. Le seul outil utilisé pour la
génération & délai polynémial avec ces formules est la résolution unitaire.

Au Chapitre 3, nous montrons que moyennant le pré-calcul d’un ordre
particulier sur les variables, il est possible d’utiliser notre algorithme, en
utilisant uniquement la résolution unitaire, pour générer les solutions de
deux classes supplémentaires. La classe des formules g-Horn présentée et
étudiée par Boros et al. [6, 8] et une nouvelle classe, les formules presque
Horn, qui est issue des travaux de Hébrard et Luquet [32] sur la notion
de base de Horn.

Au Chapitre 4 nous présentons un ensemble de classes de formules
pour lesquelles la résolution unitaire n’est pas suffisante, mais pour les-
quelles on sait utiliser les résultats obtenus sur le test de satisfaisabilité
pour générer toutes les solutions & délai polynémial. C’est le cas des for-
mules Horn généralisées introduites par Yamasaki et Doshita [48], de la
hiérarchie I' présentée par Gallo et Scutella [27], ainsi que des hiérarchies
présentées par Pretolani [40].

Au Chapitre 5, nous prouvons que pour certaines classes de formules,
par exemples les formules Quad présentées par Dalal [19] ou les hiérar-
chies Q et A présentées par Dalal et Etherington [20], si P£NP, il n’existe
pas d’algorithme de génération des solutions a délai polynémial.

18

Chapitre 2

Utilisation de la résolution
unitaire seule

Sommaire
2.1 Introduction 19
2.2 FormulesdeHorn 21
2.3 Formules Horn-renommables 21
2.4 Formules binaires 22
2.5 Formules équilibrées 25
2.6 Conclusion 26

2.1 Introduction

La résolution unitaire joue un réle essentiel dans 1’étude du probléme
SAT. Elle est efficace et permet de simplifier une formule trés rapidement.

Nous présentons ici un ensemble de classes de formules pour lesquelles
la résolution unitaire suffit a déterminer si (F U U) est satisfaisable (ot
F est une formule de la classe concernée et i/ un ensemble de littéraux
vu comme un ensemble de clauses unitaires).

La premiére de ces classes est la classe des formules de Horn. On sait
que tester la satisfaisabilité d’une telle formule F revient a étudier si
I’ensemble Unit(F) est cohérent. Cela nous permet de proposer un al-
gorithme & délai O(nN') pour générer tous les modeéles d’une formule de
Horn. Nous obtenons les mémes résultats pour les formules Horn renom-
mables puisque les modéles d’une formule Horn renommables sont juste
les modéles de la formule de Horn correspondante que ’on a renommés.

On remarque en outre que si une formule binaire est satisfaisable alors
elle est Horn renommable, donc générer tous les modéles d’une formule
binaire revient a tester sa satisfaisabilité, et dans le cas positif & appliquer

19

Chapitre 2. Utilisation de la résolution unitaire seule

I’algorithme trouvé pour les formules Horn renommables. Cela peut étre
fait la aussi avec un algorithme a délai O(nN).

Une autre classe pour laquelle la résolution unitaire suffit a tester
la satisfaisabilité est la classe des formules équilibrées. On utilise cette
propriété, ainsi que la stabilité de la classe par la résolution unitaire,
pour prouver que 'on peut générer a délai O(nN) tous les modéles d'une
formule équilibrée.

Soit C une classe de formules.

P 1 C vérifie P1, st pour toute formule F € C, et pour tout ensemble de
littérauz U, on a Noyau(FUU) € C.

On remarque que C vérifie P1 implique que la classe C est stable par
la résolution unitaire.

P 2 C vérifie P2, lorsque pour toute formule F € C, le fait que toute
clause de F soit de longueur supérieure ou égale @ deuz, implique que F
soit satisfaisable.

Proposition 3 SiC vérifie les propriétés Pl et P2, alors on peut tester si
F UU est satisfaisable en temps O(N) (o N est la longueur de FUU).

Preuve: On peut calculer Noyau(F UU) et Unit(F UU) en temps
linéaire (O(N)). On sait que FUU est satisfaisable si et seulement si
Unit(F UU) est cohérent et Noyau(F UU) est satisfaisable (Prop. 1).
Le test de la cohérence de Unit(F UU) est immeédiat, comme en plus on
sait que Noyau(F UU) est élément de C (P1), et qu’elle ne contient que
des clauses dont la longueur est supérieure ou égale & deux, on sait (P2)
que Noyau(F UU) est satisfaisable. O

Des Propositions 2 et 3 ont déduit immédiatement :

Corollaire 4 Si C vérifie les propriétés P1 et P2, alors pour toute for-
mule F € C, on peut générer toutes les solutions de F avec un délai

O(nN).

Nous allons maintenant étudier plusieurs classes qui vérifient les deux
propriétés P1 et P2. Parmi celles-ci, on va trouver les classes polyno-
miales les plus connues comme la classe des formules de Horn, les for-
mules Horn renommables, les formules binaires, mais aussi la classe des
formules équilibrées. On verra dans la Partie II que les classes des for-
mules Horn étendues et Horn étendues simples vérifient cette propriété,
on découvrira aussi dans la Partie III de cette thése la classe des formules
ordonnées qui vérifie elle aussi ces deux propriétés.

20

2.2, Formules de Horn

2.2 Formules de Horn

La classe des formules de Horn est la plus connue des classes de for-
mules de logique propositionnelle. C’est la classe qui sert de base au
langage Prolog ainsi qu’aux systémes d’apprentissage a base de régles.

Définition 1 (formule de Horn) Une clause C est dite clause de Horn
st elle contient au plus un littéral positif. Une formule est dite de Horn
st toutes ses clauses sont des clauses de Horn.

Exemple: La formule Fy = {{x1, ~aq, mas}, {724, ~ws}, {23, ~w5}} est
une formule de Horn, mais la clause {4, x5} n’est pas une clause de Horn.

On peut tester en temps linéaire si une formule est une formule de
Horn, il suffit de compter pour chaque clause le nombre de littéraux
positifs.

Proposition 5 Si F est une formule de Horn, alors pour tout ensemble
de clauses unitaires U, Noyau(F UU) est une formule de Horn.

Preuve: Soit €’ une clause de F' = Noyau(F UU), il existe une clause
C € FUU telle que C" C C (par définition de Noyau). L’ensemble U
ne contient que des clauses unitaires, donc C' € F et C est une clause de
Horn. La clause C' ne contient donc pas plus d’un littéral positif, il en est
alors de méme pour C’. O

Proposition 6 Si F est une formule de Horn, dont toutes les clauses
sont de longueur supérieure ou égale a deux, alors F est satisfaisable.

Preuve: Soit M = {-x |« € V}. L’ensemble M est un modéle pour F,
car toute clause de F contient au moins un littéral négatif et est donc
satisfaite par M. O

Exemple: La formule F; présentée ci-dessus admet ’ensemble de litté-
raux {—ay, xy, Tx3, Ty, x5} comme modele.

La classe des formules de Horn vérifie donc les deux propriétés P1 et
P2, on peut donc générer tous les modéles de toute formule de Horn a

délai O(nN) (Corollaire 4).

2.3 Formules Horn-renommables

La satisfaisabilité d’une formule n’est pas altérée par un renommage
de ses variables. Dans les formules de Horn, littéraux positifs et négatifs

21

Chapitre 2. Utilisation de la résolution unitaire seule

jouent des roles dissymétriques, il est donc naturel d’étudier la classe des
formules qu'un renommage de certaines de ses variables transforme en
une formule de Horn.

Définition 2 (formule Horn-renommable) Une formule est dite Horn-
renommable si on peut la transformer en une formule de Horn en renom-
mant certaines de ses variables.

Exemple: La formule F;, = {{xy, ~aa, a3}, {-a4, 5}, {23, x5} } est Horn-
renommable. Si on renomme les variables x3 et x5, on obtient la formule
de Horn F; présentée dans I'exemple précédent.

Plusieurs algorithmes permettant de tester si une formule est Horn-
renommable ont été proposés [1, 11, 31]. La complexité des meilleurs
algorithmes est linéaire en la longueur de la formule (O(N)).

Proposition 7 Si F est Horn-renommable, alors pour tout ensemble de
littérauz U, la formule Noyau(F UU) est Horn-renommable.

Preuve: On rappelle qu'un renommage est un ensemble de littéraux qui
est cohérent et complet (cf. définitions Sec. 1.2).
Comme F est Horn-renommable, il existe un renommage R tel que
R(F) est Horn. Soit U’ = R(U), on adonc Noyau(R(F)UU') = Noyau(R(F UU))
est Horn (Prop. 5). D’ott Noyau(F UU) est Horn-renommable. O

Proposition 8 SiF est Horn-renommable et que toutes ses clauses sont
de longueur supérieure ou égale a deux, alors F est satisfaisable.

Preuve : Evident car le renommage des variables ne change pas la satis-
faisabilité d’une formule. O

Exemple: La formule F, définie ci-dessus est satisfaite par le modéle
de F; dans lequel on a renommé les variables x3 et x5, ce qui donne le
modele {—xy, maq, x5, 7xy, 5}

La classe des formules Horn-renommables vérifie donc les deux pro-
priétés P1 et P2, on peut donc comme pour les formules de Horn générer
tous les modeéles a délai O(nN) (Corollaire 4).

2.4 Formules binaires

Nous étudions ici ’autre grande classe de formules de logique proposi-
tionnelle. Les formules binaires sont intéressantes, car on peut tester leur

22

2.4. Formules binaires

satisfaisabilité en temps linéaire, et il est trivial de tester si une formule
appartient & la classe.

Définition 3 (formule binaire) Une formule est dite binaire si toutes
ses clauses sont de longueur inférieure ou égale a deux.

Exemple: Soit F3 = {{51?1751?2}7{51?17_‘51?3}7{_‘51?2751?3}7{_‘51?27_‘51?3}}- La

formule Fj3 est binaire, car toutes ses clauses ont une longueur < 2.

La reconnaissance des formules binaires est trivialement linéaire, il
suffit de compter pour chaque clause de F le nombre de littéraux.

De plus, Even et al. [24] ont donné un algorithme efficace pour tester
la satisfaisabilité d’une formule binaire.

Proposition 9 On peut tester en temps linéaire si une formule F dont
toutes les clauses sont de longueur deux est satisfaisable.

Preuve: On peut voir toute clause de deux littéraux {ly,/2} comme une
double implication, l; — I et I; — [;. On peut construire le graphe
GG dont les sommets sont les littéraux de la formule et dont les arcs
correspondent aux implications données ci-dessus.

Nous allons maintenant prouver que F est satisfaisable si et seulement
si il n’existe pas de couple de littéraux complémentaires appartenant a
la méme composante fortement connexe. Pour tout modéle, si un littéral
appartient & M, alors il en sera de méme pour tous les littéraux de la
méme composante fortement connexe. Donc, si deux littéraux complé-
mentaires apparaissent dans la méme composante fortement connexe, la
formule F est forcément insatisfaisable.

A Tinverse, supposons qu’il n’existe pas de couple de littéraux complé-
mentaires apparaissant dans une méme composante fortement connexe
de G. Considérons le graphe quotient G' obtenu en rassemblant en un
noeud chaque composante fortement connexe de (5. Ce graphe est forcé-
ment acyclique (par définition des composantes fortement connexes), il
définit donc un ordre partiel sur ses éléments. On peut étendre cet ordre
en un ordre total. Pour chaque variable x, si la composante fortement
connexe de x apparait avant celle de —x, on ajoute —x dans M, sinon
c’est x qui est ajouté a M. On peut prouver que ce modeéle satisfait la
formule.

Comme il est possible de calculer en temps linéaire les composantes
fortement connexes de ¢ en utilisant I’algorithme de Tarjan [47], comme
en plus I'algorithme de Tarjan calcule les composantes fortement connexes
dans 'ordre topologique inverse, nous obtenons donc un algorithme li-
néaire pour calculer la satisfaisabilité des formules binaires. O

Exemple: Le graphe ¢ (Fig. 2.1) est le graphe d’implication associé
a la formule F5. Dans ce graphe, la composante connexe de chaque

23

Chapitre 2. Utilisation de la résolution unitaire seule

noeud est ce noeud lui méme. On peut donc obtenir 'ordre total sui-
vant: (@, a2, T3, 3, T, 21). On obtient pour cet ordre le modele
{x1, 29, 23}. On peut vérifier que ce modele satisfait Fj.

/N

Ty 5 T3

, V

T3 — » 7T

Zq
FiG. 2.1 — Graphe dimplication de F;

Proposition 10 Une formule binaire dont toutes les clauses sont de lon-
gqueur deux est satisfaisable si et seulement si elle est Horn-renommable.

Preuve: (=) La formule F est satisfaisable et binaire. Soit M le mo-
déle de F. M est cohérent et complet, donc M = {l | [€ M} est un
renommage. M () est positif si et seulement si [€ M, donc ssi | & M.
Comme pour chaque clause C' € F, CN\M # (), c’est a dire | CNM |> 1,
d’ott | C' N'M |< 1, ce qui signifie que M(C') contient au plus un littéral
positif. F est donc Horn-renommable.

(<) Supposons F Horn-renommable. Il existe donc un renommage R
tel que R(F) est une formule de Horn. Donc pour toute clause C' € F,
on a R(C) contient au plus un littéral positif donc | RN C |< 1. Soit
M ={l|l€ R}.Onaque| MNC |> 1 donc M est un modéle pour F. O

Exemple: La formule F5 est Horn-renommable. Si on renomme 1 et a3,
on obtient la formule Fy = { {—aq, 22}, {2y, a3}, {-a2, ~as}, {-a2, 25}
} qui est une formule de Horn.

Proposition 11 Si F est une formule binaire, alors on peut générer
tous ses modeéles a délai O(nN).

Preuve: Il suffit d’appliquer le test de satisfaisabilité (Prop. 9) sur F.
Si celui-ci est négatif, alors on peut dire en temps linéaire que F n’admet
aucun modéle. Si ce test est positif, alors la Proposition 10 implique que
F est Horn-renommable, on applique donc 'algorithme Génération. Le
corollaire 4 ainsi que les résultats de la section 2.3 impliquent le résultat.
O

24

2.5. Formules équilibrées

2.5 Formules équilibrées

Conforti et Cornugjols [14] ont présenté une classe de formules pour
laquelle le test de satisfaisabilité se fait a ’aide uniquement de la réso-
lution unitaire. Nous allons ici prouver que 'on peut générer toutes les
solutions de telles formules & délai O(nN).

Définition 4 (formule équilibrée) Considérons la formule F = {C4,...

sur un ensemble V = {x1,...,x,}. Associons a F la (0,+1)-matrice M
suivante. Les lignes de M sont indexées par les clauses de F et les co-
lonnes sont indexées par les variables de telle fagon que M;; soit un +1
six; € O, un —1 st mx; € C; el un 0 sinon. La formule F est équilibrée
si pour chaque sous-matrice carrée de M ayant exactement deux entrées
non nulles par ligne et par colonne, la somme des entrées est un multiple
de quatre.

Exemple: Soit Fs = {{—x1, 22}, {21, 29, 23}, {x2, 23} }. On va voir ici
que F5 est équilibrée. La matrice associée a la formule F5 est:

Cy [—1 1 0
Gy =1 1 1 (2.1)
Cs\ 0 1 1

et ses seules sous-maftrices carrées ayant exactement deux entrées non
nulles par ligne et par colonne sont :

1 T2

Ci (-1 1

o (_1 :) (2.2)
Ty T3

Cof 1 1
2.
() 23
La sous-matrice 2.2 correspondant aux variables xi,x; et aux clauses
C1,C5 a une somme égale & zéro (: 0 * 4). La sous-matrice 2.3 corres-

pondant aux variables o, x3 et aux clauses Cy, C5 est telle que la somme
de ses entrées est égale a quatre. F5 est donc une formule équilibrée.

On peut tester en temps polynoémial si une formule est équilibrée.
En effet Conforti et al. [15] ont proposé un algorithme polynomial pour
reconnaitre si une matrice 0,+1 est équilibrée. Comme la construction
de la matrice se fait en temps O(n?) et son remplissage en O(N), il est
donc possible de tester efficacement si une formule est équilibrée.

Proposition 12 Soit U un ensemble fini de clauses unitaires, si F est
équilibrée, alors Noyau(F UU) est équilibrée.

25

O}

Chapitre 2. Utilisation de la résolution unitaire seule

Preuve: Soit M’ la matrice correspondant a la formule 7 = Noyau(FU
U). La formule F' est égale a F sauf que 1'on a effacé des clauses et cer-
tains littéraux. M’ est donc une sous-matrice de M (on a effacé des lignes
et des colonnes a M pour construire M’). Donc toute sous-matrice carrée
de M’ est sous-maftrice carrée de M ce qui implique que la propriété est
vérifiée pour F', donc F’ est équilibrée. O

Proposition 13 Soit F un formule équilibrée, si F ne contient pas de
clause unitaire, alors F est satisfaisable.

Preuve : Conforti et Cornuéjuols [14] ont prouvé que pour toute formule
équilibrée F, si toute clause de F contient au moins deux littéraux, alors
pour toute variable z;, il existe au moins deux modéles satisfaisant F,
un contenant x; et un autre contenant —x;. ([14] Page 673 remark 3.3)
O

Exemple: M = {—x1, 25,23} est un modele de Fs.

La classe des formules équilibrées vérifie donc les deux propriétés P1
et P2, on peut donc générer tous les modéles de toute formule équilibrée

a délai O(nN) (Corollaire 4).

2.6 Conclusion

Dans les parties II et III de cette thése nous allons nous intéresser
a des classes de formules qui vérifient les propriétés P1 et P2. Clest a
dire des formules pour lesquelles on a un algorithme a délai O(nN) pour
générer toutes les solutions. Le lecteur peut passer les chapitres suivants
et poursuivre sa lecture directement avec les parties II et III.

Chandru et Hooker [12] ont présenté la classe des formules Horn éten-
dues. Nous étudions cette classe dans la partie II. Dans le premier cha-
pitre de cette partie, nous étudions la définition et 'origine de cette classe
de formules. C’est aussi ’occasion de vérifier que I’'on peut générer tous les
modeles de telles formules efficacement. Malheureusement il n’existe pas
encore d’algorithme polynémial permettant de tester si une formule est
Horn étendue. C’est la raison pour laquelle, Swaminathan et Wagner [46]
ont présenté la classe des formules Horn étendues simples. Cette classe
est une restriction de la classe des formules Horn étendues, qui vérifie
elle aussi les propriétés P1 et P2, mais pour laquelle ils ont présenté un
algorithme de reconnaissance quadratique. Nous présentons méme dans
cette these (partie I1) un algorithme de reconnaissance linéaire.

Dans la partie 1II nous présentons une nouvelle classe, les formules
ordonnées. Cette classe vérifie & la fois P1 et P2, donc on peut générer
ses modeles avec un délai O(nN).

26

Chapitre 3

(Générer en utilisant un ordre
sur les variables

Sommaire
3.1 Introduction 27
3.2 Formules presque Horn 28
3.3 Formulesg-Horn............... 35

3.1 Introduction

On a vu au Chap. 2 qu’il était possible de générer toutes les solutions
des formules de certaines classes en utilisant uniquement la résolution
unitaire. Pour que cela soit possible, il faut que la classe vérifie les pro-
priétés P1 et P2. P1 signifie que si F appartient & la classe, alors pour
tout ensemble de clauses unitaires U, Noyau(F UU) appartient aussi a
la classe. P2 signifie que si F appartient a la classe et ne contient pas de
clause unitaire, alors F est satisfaisable.

Nous allons étudier une nouvelle extension de Horn dans ce chapitre.
Il s’agit de la classe presque Horn, qui est issue des travaux de Hébrard
et Luquet [32] sur la base de Horn. Ils ont remarqué que méme si une
formule n’était pas Horn renommable, il était possible de renommer par-
tiellement cette formule ce qui permet de simplifier la formule et donc
de résoudre plus facilement le probléme de satisfaisabilité. En itérant ce
principe, on peut trouver une classe de formules (que nous avons appelée
presque Horn) pour laquelle on détermine la satisfaisabilité des formules
en temps linéaire. Malheureusement, la classe presque Horn ne vérifie
pas la propriété P1, c’est a dire qu’il existe des formules presque Horn
et des ensembles U tels que Noyau(F UU) n’est pas presque Horn. Mais
dans 'algorithme de génération (Fig. 1.1) les ensembles U ne sont pas
quelconques, ils sont construits en utilisant un ordre arbitraire donné sur

27

Chapitre 3. Générer en utilisant un ordre sur les variables

les variables. On va prouver ici que pour toute formule F, sous réserve
du calcul d’un ordre acceptable sur les variables, pour tout ensemble ¢
utilisé dans algorithme, si F est presque Horn alors Noyau(F UU) est
aussi presque Horn. Ceci nous permet donc de générer a délai O(nN) (ou
N représente la taille totale de la formule et n le nombre de ses variables)
tous les modéles de toute formule presque Horn.

Nous étudions ensuite la classe q-Horn qui a été introduite par Boros
et al. [6]. Cette classe généralise & la fois les formules binaires et les
formules de Horn. On remarque que toute formule g-Horn satisfaisable
est aussi presque Horn. Comme il existe un algorithme linéaire pour tester
la satisfaisabilité d’une formule q-Horn, nous présentons un algorithme
a délai O(nN) permettant de générer tous les modeles d’une formule
q-Horn.

3.2 Formules presque Horn

Si une formule n’est pas Horn renommable, elle peut étre partielle-
ment renommable. Hébrard et Luquet [32] ont étudié le phénomene des
formules partiellement renommables, ils en ont extrait le concept de base
de Horn. Nous utilisons ici ce concept pour introduire une nouvelle classe
de formules, les formules presque Horn. Nous présentons un algorithme
linéaire permettant de tester la satisfaisabilité d’une telle formule. Dans
cette section, nous allons rappeler les principaux résultats de Hébrard
et Luquet et nous allons montrer que ’on peut, moyennant I'introduc-
tion d’un ordre sur les variables, calculer tous les modéles d’une formule
appartenant a cette classe avec un délai O(nN).

Définition 5 (formule X-Horn) Soit X C V. F est X-Horn si toute
clause de F qui contient un littéral positif de Lit(X) est une clause de
Horn sur X (i.e. ne contient que des littérauz de Lit(X) et contient au
mazimum un littéral positif).

Exemple: Soit F; = { {xs5, 26}, {5, 26, "7}, {23,724}, {23, 24},
{x1, 29, m23}, {1, 722, 26}, {71, 22}, {a1, "2} }. Fiest {3, 24}-Horn,
en effet les clauses qui contiennent des littéraux positifs sur a3 et x4, sont
des clauses de Horn sur les variables x5 et x4.

On remarque que les clauses d’une formule X-Horn peuvent étre de
trois types:
e clauses de Horn sur X ;
e clauses sur V' contenant des littéraux négatifs de Lit(X) avec des litté-
raux de Lit(V'\ X), mais ne contenant aucun littéral positif de Lit(X);
e clauses sur V' \ X.

28

3.2. Formules presque Horn

Définition 6 (formule X-Horn-renommable, Reste(F, X)) Soit X C
V. F est X-Horn-renommable si on peut transformer F en une for-
mule X-Horn en renommant des variables de X. On utilise la notation

Reste(F, X)) pour Uensemble {C € F | C N Lit(X) = 0}.

Exemple: La formule F; est {x5, 26, x7 }-Horn-renommable (on renomme
la variable x¢).

Hébrard et Luquet [32] ont étudié la notion de X-Horn-renommabilité,
ils ont prouvé les deux propositions suivantes et ont découvert la notion
de base de Horn. Ils ont remaqué que la X-Horn-renommabilité d’une
formule permettait, pour 1’étude du probléme de satisfaisabilité, de se
ramener & [’étude d’'une formule plus simple.

Proposition 14 Si F est X-Horn-renommable et ne contient pas de
clause unitaire, alors F est satisfaisable ssi Reste(F, X) est satisfaisable.

Preuve: (=) Immédiat, car Reste(F,X) C F.

(«) Cas particulier: F est X-Horn. Soit M un modeéle (sur V' \ X)
de Reste(F,X) et [={-p|p € X}. Alors [UM est un modele de F.
En effet, pour tout C' € F, soit on a C' € Reste(F,X) et C N M # (),
ou alors C N[# 0 (car F est X-Horn et card(C) > 2). Cas général : F
est X-Horn-renommable. Se déduit du cas précédent car le renommage
préserve la satisfaisabilité. O

Proposition 15 Soient X1 CV et Xy C V. Si F est Xi-Horn-renommable
et Xy-Horn-renommable, alors F est (X1 U X3)-Horn-renommable.

Preuve : On peut trouver une preuve de cette proposition dans [32], une
démonstration du méme type de résultat est en outre présentée en Par-

tie I1I Chap. 2 Prop. 83. O

La proposition précédente, implique que pour toute formule F, il
existe un ensemble canonique B (B C V) tel que F est B-Horn-renommable
et tel que pour tout X, si F est X-Horn-renommable, alors X C B.

Définition 7 (base de Horn, Reste(F)) Soient Xi,..., X} tous les
sous-ensembles de V' tels que F est X;-Horn-renommable et B = X; U
... U Xg. La Proposition 15 implique que F est B-Horn-renommable.
L’ensemble B sera appelé la base de Horn de F et noté Base(F). On
définit en outre Uensemble, Reste(F) = Reste(F, Base(F)).

Exemple: On a vu que Fj est {x3, 4 }-Horn (donc {x3, 4 }-Horn-renommable)

et {ws, s, x7}-Horn-renommable, F; est donc {x3, x4, x5, x6, v7}-Horn-
renommable. On peut prouver que Base(F;) = {3, 24,5, 26, 27}. On

29

Chapitre 3. Générer en utilisant un ordre sur les variables

peut donc calculer Reste(Fy) = { {—x1, 22}, {@1, 722} }.

Corollaire 16 Si F ne contient pas de clause unitaire, alors F est sa-
tisfaisable si et seulement si Reste(F) est satisfaisable.

On remarque donc que si Reste(F) =) et que F ne contient pas de
clause unitaire, alors la formule F est satisfaisable. On va se servir de ce
résultat pour définir une nouvelle classe de formules, les formules presque
Horn.

Si Base(Reste(F)) est non vide, alors Reste(Reste(F)) est un sous
ensemble strict de Reste(F). On peut répéter ce processus tant que 'on
obtient des formules dont la base de Horn est non vide.

Définition 8 (formule presque Horn) Soit Reste-itéré(F) le sous-ensemble
de F défini récursivement par: si Base(F) = () alors Reste-itéré(F) = F
sinon Reste-itéré(F) = Reste-itéré(Reste(F)).

Une formule F est presque Horn, si Reste-itéré(F) =).

Exemple: F; est presque Horn, car Reste(Fy) est une formule de Horn,

donc Reste(Reste(Fy)) = (.

Corollaire 17 Soit F une formule presque Horn, si F ne contient pas
de clause unitaire, alors F est satisfaisable.

Malheureusement, la propriété P1 n’est pas vérifiée pour la classe
presque Horn.
Exemple: Soit U = {{x3}, {~ae}}, Unit(FL UU) = {xs, x4, x5, "6}
et donc Noyau(Fy UU) = {{xy, 22}, {x1, na2}, {—ag, 22}, {-x1, ~aa}}.
Quel que soit U'ensemble X C {xy, x5}, cette formule n’est pas X-Horn-
renommable, donc Base(Noyau(F, UU)) = 0, et donc Noyau(F; UU)

n’est pas une formule presque Horn.

Nous présentons maintenant une adaptation de ’algorithme de géné-
ration pour qu’il puisse donner tous les modéles de toute formule presque
Horn.

Nous effectuons le pré-calcul d’un ordre sur les variables qui nous per-
met ensuite d’appliquer ’algorithme de génération sans risque de tomber
dans le probléme soulevé par ’exemple ci-dessus.

Nous présentons des résultats intermédiaires qui permettent de mieux
apréhender la notion de formule presque Horn. Tout d’abord, on re-
marque que si une formule est incluse dans une autre, alors son Reste
est inclus dans le Reste de 'autre formule.

Proposition 18 Si F' C F alors Reste(F') C Reste(F).

30

3.2. Formules presque Horn

Preuve : On va faire une preuve par I’absurde. Supposons que Reste(F') €
Reste(F). Alors il existe une clause C telle que C' € Reste(F') et
C ¢ Reste(F). Mais comme Reste(F') C F' (par définition du Reste),
onaC € F donc C € F (car F' C F). Comme C ¢ Reste(F), on
a C N Lit(Base(F)) # 0. Soit Y = Base(F) Nwvar(F') (on a Y #
car C € F' et C N Lit(Base(F)) # 0). Par définition de la X-Horn-
renommabilité, pour toute clause C' € F, pos(C') N Base(F) # O im-
plique que var(C) C Base(F). Or F' C F, donc pour toute clause
C € F', pos(C)NBase(F) #) implique que var(C) C Base(F). Comme
Y = Base(F) N var(F'), pour toute clause C' € F', pos(C)NY £
implique que var(C) C Base(F). Mais pour toute clause C' € F,
var(C') C var(F'), donc var(C') C Base(F) est équivalent a var(C) C
Y. Donc pour toute clause C € F', pos(C) NY # @ implique que
var(C') C Y. Donc F' est Y-Horn-renommable. Donc Y C Base(F’) (par
définition de la base de Horn). De plus var(Reste(F')) N Base(F') =)
(par définition du Reste). D’ou var(Reste(F')) NY = () et finalement
var(Reste(F')) N Base(F) = 0. Contradiction. O

Proposition 19 Si F' C F et F est presque Horn, alors F' est presque
Horn.

Preuve: Si Reste-itéré(F) = (), alors la Prop. 18 implique que Reste-
itéré(F')y = 0. O

Nous présentons une définition alternative pour les formules presque
Horn, cette définition n’utilise pas le concept de base de Horn, mais se
contente de la notion plus faible de X-Horn-renommabilité.

Proposition 20 F est presque Horn ssi il exviste Xq,..., X, X; CV
(1 <i<k) etFr,....Fr, , CF (1 <1 < k), tels que F1 = F, Fi est
X;-Horn-renommable (1 <1< k), Fiy1 = Reste(F;, X;) (1 <i<k—-1)
et Frp=10.

Preuve: (=) Immédiat, il suffit de prendre X; = Base(F;) pour tout ¢,
avec F; = F et Fip1 = Reste(F).

(<) On raisonne par récurrence sur k.
k=10naF =10, Reste(F) =0 et F est presque Horn.
k > 1 Par hypothése de récurrence, F, est presque Horn. Par définition
de la base de Horn, Reste(F;) € Fz. Donc Reste(Fy) est presque Horn
(Prop. 19), Reste-itéré(Fy) = 0 et Fy est presque Horn. O

Remarque 1 Soit F' une formule obtenue en renommant des variables
dans F. F est presque Horn ssi F' est presque Horn.

31

Chapitre 3. Générer en utilisant un ordre sur les variables

On a vu que méme si F est presque Horn, il existe des ensembles de
clauses unitaires U tels que Noyau(F UU) n’est pas presque Horn. Nous
présentons ici une caractérisation d’ensembles U tels que Noyau(F UU)
soit toujours presque Horn.

Définition 9 (permutation convenable, ensemble convenable) Supposons
que F est presque Horn. Il existe Xq,.... X, X; CV (1 <0 < k), et
FiyoonFr, Fi € F (1 <0 < k), tels que F1 = F, X; = Base(F,)

(1 <i < k), Fiq1 = Reste(Fi, X;) (1 <1< k—1) et Fr = 0. Soit

W =V\(X1U...UXy). Une permutation (x1,...,x,) des variables de

F est dite convenable si pour tout j (1 < j<n), {x1,...,2;} CTW ou

il existe @ tel que {xq,...,2;} = WUX,UXpy U...U X4 UX avee

X C X;. Un ensemble U de clauses unitaires est dit convenable s’/ existe

un permutation convenable (xq,...,x,) et un entier i € {1,...,n}, tels

que var(U) ={x; |1 < 5 <}

Exemple: Pour la formule F; qui nous sert d’exemple, on a W = (),
Xy = w3, 24,25, 26,27} et Xy = {21, 22}. L’ensemble U = {{a3}, {26} }
n’est pas un ensemble convenable, car pour toute permutation m, si a3
et xg sont les deux premiers éléments de 7, alors m n’est pas convenable,
car on a {x3,26} C Xj, donc ne vérifie pas la définition d’une permu-
tation convenable. On a remarqué a I’exemple précédent, que dans ce cas,
Noyau(FiUU) n’est pas presque Horn. L’ensemble V = {{x1}, {x2}, {—~xs}}
est un ensemble convenable, car var(V) = X, U X avec X C X;. On
remarque qu'un ensemble est convenable, si lorsqu’il contient un élé-
ment de Lit(Base(F1)), alors il contient un littéral correspondant a
chaque variable n’appartenant pas a la base de Horn. On remarque que
Noyau(F1UY) = { {xs, 26}, {x5, v6, 727}, {x6} } est une formule presque
Horn (elle est méme Horn renommable).

Proposition 21 Si F est une formule presque Horn, et ne contient pas
de clause unitaire, alors pour tout ensemble convenable de littérauz U,
Noyau(F UU) est presque Horn.

Preuve: Nous allons prouver que Noyau(F UU) est presque Horn. La
proposition 20 implique qu’il existe Xq,..., X, X; CV (1 <@ < k),
et Fi,oo oy Fiy Fo € F (1 <0 < k), tels que Fy = F, X; = Base(F,)
(1 <i<k), Fiy1 = Reste(F;, X;) (1 <i<k—1) et Fr = 0. Pour tout
i (1 <0< k), Fi est X;-Horn-renommable. Sans perte de généralité, on
peut supposer que F; est X;-Horn (1 < ¢ < k) (cf Remarque 1). Soit G,
(1 <@ < k) la formule obtenue, a partir de F; en supprimant toutes les
clauses C' € F telles que C' N Unit(FUU) # (D, et en otant des clauses
restantes tout littéral ¢ tel que ¢t € Unit(F UU). Soit Y; = X; Nvar(G;)
(1 < i < E). On obtient donc G; = Noyau(F UU), G, C Gy (1 <i < k)

32

3.2. Formules presque Horn

et G, = 0. 1l suffit de prouver que G; est Y;-Horn (1 < ¢ < k) et que
Git1 = Reste(G,, Y:) (1 <i <k —1) (Prop. 20).

On prouve dans un premier temps que G; est Y;-Horn (1 < ¢ < k).
Soit €' € G;. La définition de G; nous donne qu’il existe ' € F; tel que
C'CC,CNUnit(FUU) =0, et pour tout t € C\ C', 1 € Unit(FUU).
Soit [€ C'. Sil € Lit(Y;) et [est un littéral positif,alors par définition de
Vi, L € Lit(X;), et C C Lit(X;) puisque F; est X;-Horn ; par conséquent
C" C Lit(Y;). Par définition des formules X,;-Horn, on sait que C ne
contient qu'un seul littéral positif. Puisque C’ C (', on peut conclure que
C" est une clause de Horn sur Y;. Donc G; est une formule Y;-Horn.

On prouve maintenant que G;y1 = Reste(G,,Y:) (1 <@ < k—1).
(C) On a Fiy1 = Reste(F;, X;). Donc Fipy € Fi et Gy C G,. Soit
C" € Giyr. Il existe C' € Fipq tel que ¢ C C. On a C € Reste(F;, Xi),
dou C' N Lit(X;) =0, C"N Lit(Y;) = 0 et C" € Reste(G,Y;). (2) Soit
C" € Reste(G;,Y;). llexiste C' € F; tel que C" C C, CNUnit(FUU) =0,
et pour tout t € C\C', 1 € Unit(F UU). Soit] € C'.Onavar(l) € Y;, 1 €
C et var(l) ¢ X;. Donc var(l) ¢ X; (1 < j <1i). De plus var(l) € var(U)
puisque [€ Unit(FUU) et | € Unit(FUU). Donc var(d) N X; = ()
(1 <4 <) (permet d’utiliser le lemme 22). Or U est convenable. Sup-
posons que C' ¢ Reste(F;, X;). Alors il existe ~x € C tel que x € X,.
On a —a ¢ C', dot x € Unit(F UU). Impossible (Lemme 22). Dot on
déduit que C' € Reste(Fi, X;), C € Fiyr et C' € Gy, O

Lemme 22 Supposons que F ne contienne pas de clause unitaire, et
qu’il existe Xq,..., X, Xi CV (1 <0 < k), et Fr,....F, F. CF
(1 <0 < k), tels que Fy = F, F; est X;-Horn (1 <1 < k), Fipq1 =
Reste(F;, X;) (1 < i < k—1) et F, = 0. Soit U un ensemble fini de
clauses unitaires tel que Unit(F UU) est cohérent, et ig € {1,... .k} tel
que pour tout j (1 < j <'ig)var(d)NX; = 0. Alors X;; NUnit(FUU) =
0.

Preuve: On va prouver par récurrence sur p que pour toute dérivation
unitaire o de longueur p de F UU, o ne contient pas de clause unitaire
positive {z} telle que x € X;, N Unit(FUU).

p = 1 Les dérivations de longueur 1 ne contiennent que des clauses de
F UU, Thypothese de récurence est donc vérifiée pour p = 1.

p > 1 Supposons qu’il existe x un littéral positif et o une dériva-
tion de longueur p, 0 = (Cq,...,C,) tels que C, = {a} et € X,,. o
contient une clause C' = {x,ly,...,ly} (avec h > 1) et les clauses uni-
taires {l1},...,{ls}. On va prouver que C' ne contient pas de littéraux
négatifs. Soit —z € C tel que z € X; et 7 est minimal. On a j < 19
puisque x € X, et o contient une clause unitaire positive C; = {z} avec
1 < p, ce qui est impossible par hypothése de récurrence. C' ne contient

donc que des littéraux positifs. C' € F;, donc € est Horn sur X, , ce qui
est impossible puisque A > 1.

33

Chapitre 3. Générer en utilisant un ordre sur les variables

La propriété est donc vraie pour tout p. O

Proposition 23 Si F est presque Horn et ne contient pas de clause
unitaire alors pour tout ensemble convenable de littéraux U, F UU est
satisfaisable si et seulement si Unit(F UU) est cohérent.

Preuve: (=) Si FUU est satisfaisable, alors Unit(FUU) est cohérent
(Rem. 1).

(«<=) Noyau(FUU) est presque Horn (Prop.21), donc satisfaisable (Coro.17),
Unit(F UU) est cohérent (par hypotheése). La remarque 1 implique que

F UU est satisfaisable. O

Proposition 24 On peut tester si une formule F est presque Horn et,
st c’est le cas, construire une permutation convenable en temps O(nN).

Preuve: Hébrard and Luquet[32] ont présenté un algorithme pour le
calcul de la base de Horn d’une formule. Ils ont montré qu’on pouvait
calculer la base de Horn d’une formule en temps linéaire. On peut ob-
server que si Base(F) est connue, alors il est facile de calculer Reste(F)
en temps O(N). On obtient donc Reste(F) en temps O(N). Si Base(F)
n’est pas vide, alors ’ensemble des variables de Reste(F) est strictement
inclus dans V. En conséquence, le calcul du Reste-itéré(F) requiére au
maximum n étapes et est donc exécuté en temps O(nN). On obtient,
comme sous-produit de ce calcul, les ensembles X1, ..., X} et les formules
Fiy.ooy Fy tels que Fipy = Reste(Fi, X;) (1 <i<k—1)et Fr, =0. Il est
facile de construire en temps O(n) une permutation convenable & partir

des ensembles Xy,..., X et de V\ (X;U...UX}). O

Proposition 25 On peut générer a délai O(nN) les modeéles de toute
formule presque Horn.

Preuve: L’algorithme Génération (Fig. 1.1) peut étre appelé avec n’im-
porte quelle permutation. Si on utilise une permutation convenable, a
chaque pas de 'algorithme F UU U {{l;}} est satisfaisable ssi Unit(F U
UU{{l;}}) est cohérent (ott I; est x; ou —z;) (Prop. 23). On peut en outre
tester en temps O(N) si Unit(FUUU{{l;}}) est cohérent. Le reste de la
preuve est similaire & celle de la Prop. 2. L’algorithme Génération donne
donc tous les modeéles d’une formule presque Horn avec un délai O(nV).
O

34

3.3. Formules ¢-Horn

3.3 Formules gq-Horn

La classe des formules ¢-Horn a été présentée par Boros et al. [6].
Cette classe est & la fois une généralisation des formules de Horn et des
formules binaires. Boros et al. ont présenté un algorithme linéaire pour
résoudre le probléme de la satisfaisabilité d’une formule q-Horn. Boros
et al. [8] ont par ailleurs proposé un algorithme linéaire assez compliqué
pour tester si une formule est q-Horn. Toutefois, Hébrard et Luquet [32]
ont remarqué le lien entre une formule g-Horn et la notion de base de
Horn présentée a la Section 3.2.

Boros et al. [6] donnent une définition fonctionnelle pour les formules
q-Horn, nous utiliserons de préférence ici la caractérisation syntaxique
mise en évidence dans ce méme papier.

Définition 10 (q-Horn) F est ¢-Horn si'V (son ensemble de variables)
peut étre découpé en deuxr ensembles X et Y tels que les clauses de F
appartiennent a un des deux types suivants :

— clauses contenant au plus un littéral positif sur X et pas de littéral
sur Y.

— clauses ne contenant aucun littéral positif sur X, et au plus deux
littéraux (positifs ou négatifs) sur'Y .

Pour se rapprocher de notre caractérisation des formules X-Horn, on
peut aussi I’écrire de la fagon suivante. Chaque clause de F appartient a
I’un de ces trois ensembles:

— clauses contenant au plus un littéral positif sur X et pas de littéral

sur Y.

— clauses ne contenant aucun littéral positif sur X, mais au moins un
littéral négatif sur X, et au plus deux littéraux (positifs ou négatifs)

sur Y.

— clauses contenant au maximum deux littéraux (positifs ou négatifs)
sur Y, et aucun littéral sur X.

On peut donc remarquer que si F est g-Horn, alors F est X-Horn.
Cela nous conduit donc & une caractérisation des formules q-Horn pré-
sentée dans [32] qui utilise la notion de base de Horn. Une formule F
est g-Horn, si et seulement si toute clause C' € F contient au maximum
deux littéraux n’appartenant pas a la base de Horn de F.

Exemple: Soit F, = { {1, ~aq, nas}, {—-xy, ~ag, a3}, {—as, 24}, {—a,
&y, s, Tgt, { X1, "Xy, X6, X7}, { X9, g, e, 7}, {26, 27}, {25, 26} -
La base de Horn de F; est {1, xq, 23, 24}. On peut vérifier que les clauses
se répartissent en trois groupes : les trois premiéres clauses ne contiennent

35

Chapitre 3. Générer en utilisant un ordre sur les variables

que des littéraux sur {1, a9, 23,24} ; les trois suivantes contiennent des
littéraux négatifs sur {ay, x2, 23, 24} et un ou deux littéraux (négatifs ou
positifs) sur {xs, x¢, 27} ; les deux derniéres clauses contiennent deux lit-
téraux sur 'ensemble {x5, x¢, 27 }. Ces deux derniéres clauses forment la

formule Reste(Fs).

On peut en outre voir que pour toute formule q-Horn F, Reste(F)
est une formule binaire. Si Reste(F) est satisfaisable, alors Reste(F) est
Horn renommable (cf Section 2.4). Dans ce cas, Reste(Reste(F)) = 0,
donc F est presque Horn, et on peut appliquer ’algorithme proposé en
section 3.2.

Proposition 26 Si F est ¢-Horn, alors on peut générer a délai O(nN)
tous ses modéles.

Preuve: Il suffit dans un premier temps de tester si F est satisfaisable
(en utilisant 1’algorithme de Boros et al. par exemple). Si la réponse est
non, alors F n’admet aucun modéle, la proposition est donc vérifiée. Si
la réponse est oui, alors F est presque Horn, donc la proposition 25 nous
donne un algorithme permettant de générer tous les modéles de F a délai

O(nN). O

36

Chapitre 4

Générer en utilisant les
résultats sur SAT

Sommaire
4.1 Introduction oe.o.. 37
4.2 Formules Horn généralisées 37
4.3 Hiérarchies de Pretolani 39

4.1 Introduction

Il existe des classes de formules pour lesquelles les propriétés Pl et
P2 ne sont pas vérifiées. Nous allons dans cette section étudier les classes
de formules dont la reconnaissance est polynémiale et qui vérifient la
propriété P1, qui traduit une certaine stabilité de la classe par rapport
a la résolution unitaire. C’est le cas des formules Horn généralisées ou
encore des hiérarchies de Pretolani. On va voir que pour ces formules, il
est aussi possible de générer toutes les solutions & délai polynémial. On ne
peut malheureusement pas traiter ce probléme en utilisant uniquement la
résolution unitaire comme dans les chapitres précédents, mais il est tout
de méme possible en utilisant les résultats obtenus sur ces formules pour
la résolution du probléme SAT, de générer efficacement tous les modéles.

4.2 Formules Horn généralisées

Soient [un littéral et = une variable, dans cette section, on rappelle
que l'on note F; = {C\{l} | C € F,l ¢ C}, cette formule correspond
aux simplifications de la formule F dans laquelle on a affecté la valeur

vraie au littéral [. On note F \ x = {C\ {a,-x} | C € F} la formule

dans laquelle on a effacé toutes les occurences de x et de —a.

37

Chapitre 4. Générer en utilisant les résultats sur SAT

Nous présentons ici les formules GHorn, qui ont été présentées par
Yamasaki et Doshita [48].

Définition 11 (formule GHorn) F est GHorn si F est Horn ou s’il
existe une variable x (appelée candidat) telle que:

1. F, est Horn.
2. F\ x est GHorn

Exemple: Soit Fg = {{z1, 22, 72y, x5}, {22, a3, 24}, {2y, nas, 2y, "5},
{—xq, 23,724} }. On va vérifier ici que Fg est GHorn. C’est la variable

r9 qui va nous servir de premier candidat. On vérifie que (Fg),, =
{{—a1, ~x3, "xg, "5}, {a3, 724} } est bien Horn. Il reste & montrer que
Fs \ x5 est bien GHorn, avec Fg \ 29 = {{x1, 7xq, 25} , {23, 24}, {21,
—ay, Ty, 25}, {xs, gt} On prend z; comme candidat, et on ob-
tient: (Fo\ x2)z, = {{—ws, x4}, {—as, ~24, x5}, {23, ~x4}} est Horn, et

la formule Fe\wg, 21 = {{—2q, 5}, {3, x4}, {023, 24, ~ws}, { a5, 724} }
est elle aussi Horn. On a donc bien que Fg est GHorn.

Gallo et Scutella [27] ont élargi cette classe et en ont tiré la hiérarchie
de classes {I'} dont la classe de base est GHorn (i.e. Horn= 'y et GHorn=
I'1).

Définition 12 (hiérarchie {I'}) F appartient a la classe I'; st F €
I';i_q ou s’il existe une variable x telle que:

1. Foeliy

Gallo et Scutella [27] donnent un algorithme polynémial (pour k fixé)
pour la reconnaissance des formules de la classe I'y.

Proposition 27 SiF est une formule de la classe I';, alors toute formule
F' telle que pour toute clause C' € F', il existe une clause C' € F avec
C'"CC, alors F € 1.

Preuve: Cette proposition est évidente au niveau 0, puisque I'y =Horn
et que si C' contient au plus un littéral positif, alors il en est forcement
de méme pour C”.

Supposons cette proposition vraie pour tout : < k— 1, on va prouver
par récurrence qu’elle est vraie pour k.

La formule F est Iy, donc il existe une suite de variables (x1,...,x;)
telle que: Fpp € Tpmy, (F\@1)e, € iy oo (F\ 21\ 2521)s, € Ty
et F\ar...\z; € I'yq. F'y, est une formule dont chaque clause est
incluse dans une clause de F,, (par hypothése de la proposition), donc

38

4.3. Hiérarchies de Pretolant

par hypothése de récurrence F',, est [',_q, il en est de méme pour toutes
les formules (F'\ @y...\ 2p_1)sz, (b < j) et pour (F'\ 2y...\ 2j_1)e;,
ainsi que pour la formule F' \ ...\ z;, ce qui implique que la formule
F' est bien élément de la classe I'y,. O

Proposition 28 Si F est une formule de la classe T';, alors pour tout
ensemble de clauses unitaires U, on a Noyau(FUU) € T

Preuve: Conséquence immédiate de la Prop. 27. O

Proposition 29 Pour tout k, soit F € I'y et U un ensemble de clauses
unitaires, on peut tester en temps O(N 1) si F UU est satisfaisable (ot
N représente la longueur de FUU).

Preuve : Kleine-Biining a prouvé [35] que la k-résolution était compléte
pour les formules de I';_;. Ce qui donne un algorithme O(N*+1) pour
tester la satisfaisabilité de toute formule de ['.

Une formule est satisfaisable ssi Unit est cohérent et Noyau est sa-
tisfaisable (Prop. 1). Pour la formule F UU il est possible de calculer
Noyau(FUU) et Pensemble Unit(FUU) en temps linéaire. Comme
Noyau(FUU) est I'y (Prop. 28), on peut tester sa satisfaisabilité en
temps O(N**1). Ceci implique que I'on peut tester la satisfaisabilité de
FUU en temps O(N*1). O

La proposition 2 implique que ’on peut générer avec un délai poly-
nomial pour un k fixé, toutes les solutions d’une formule appartenant a
la classe I'.

Malheureusement Eiter et al. [23] ont prouvé que tester si une formule
quelconque pouvait étre renommeée en une formule I'y, était NP-complet
pour tout & > 1. Mais si on sait qu'une formule est I'y renommable
(par construction par exemple) et que I'on connait le renommage, alors
générer toutes ses solutions revient a générer toutes les solutions d’une
formule I'y, et peut donc étre fait avec un délai polynémial.

4.3 Hiérarchies de Pretolani

Pretolani [40]| a généralisé les travaux de Gallo et Scutella [27]. II
améliore le schéma de décomposition de Gallo et Scutella, il étudie son
application & une classe de base, générique, dont la satisfaisabilité peut
étre testée en temps polynémial, autre que Horn. Il propose une famille
de hiérarchies polynémiales : une hiérarchie polynémiale {C} est une suite
de classes imbriquées (i.e. C; C C;11 pour tout ¢ > 0) telle qu’une formule
avec n variables appartienne & toute classe C; avec 1 > n — 1. Résoudre la

39

Chapitre 4. Générer en utilisant les résultats sur SAT

satisfaisabilité d’une formule de C; se raméne & résoudre la satisfaisabilité
de O(n') formules de la classe de base C. Si on utilise les formules de
Horn comme classe de base, on obtient la hiérarchie {A} qui est telle que
I'; € A; pour tout ¢ positif.

Nous utilisons les notations présentées a la section précédente. Soient
[un littéral et 2 une variable, on note F; = {C'\ {{} | C € F,1 ¢ C} et
Fl\e={C\z,~z|C € F}.

Soit C une classe de formules. On définit la hiérarchie polynémiale
{C} de la fagon suivante.

Définition 13 (hiérarchie polynémiale {C}) Soit Cy = C. Pour tout
i >0, F €C; st FeCi_y ous’il existe une variable x € V' (appelée le
candidat) telle que une des deux conditions suivantes soit vérifiée.

~ Fo€Ciq et Fop €C;
*f—m;eci—l etfl’ecl

P 3 (classe close par fixation) Une classe C est dite close par fiva-
tion, si pour toute formule F € C, on a F., € C F, € C pour tout
zeV.

On voit facilement que si la classe C est close par fixation, alors toute
formule de C a la propriété P1. La réciproque n’étant pas toujours vraie.
Cette propriété est vérifiée par les classes des formules Horn, Horn renom-
mables, binaires, que nous avons déja vues et aussi par les classes Horn
étendues, Horn étendues simples et ordonnées que nous verrons dans les
sections et chapitres suivants.

Supposons que la classe C est close par fixation, et qu’il existe un al-
gorithme de reconnaissance pour les formules de C qui est de complexité
O(g(N)). Dans ce cas Pretolani [40] propose un algorithme O(n‘g(N))
pour la reconnaissance des formules de la classe C;. Cet algorithme consiste
en n' tests de reconnaissance pour la classe de base C. Comme sous-
produit de cet algorithme de reconnaissance on récupére une séquence
de candidats correspondant & la formule. L’algorithme de reconnaissance
utilise le théoréme suivant.

Théoréme 30 Dans une hiérarchie polynomiale {C;}, si C est close par
fixation, alors il en est de méme pour tous les C;.

Pretolani propose ensuite un résultat sur le test de satisfaisabilité
d’une formule appartenant & une classe C; de la hiérarchie polynémiale

{c}.

Proposition 31 Si F € C; et que l'on connait un ensemble de séquences
de candidats pour F, si le test de satisfaisabilité pour la classe C a une

complexité O(h(N)), alors on peut tester la satisfaisabilité de F en temps
O(n'h(N)).

40

4.3. Hiérarchies de Pretolant

Preuve: La preuve de cette proposition est donnée par Pretolani dans
[40], nous en reprenons ici les grandes lignes.

Pour toute formule G appartenant a la classe C, on note Resoude(G)
le résultat de l'algorithme qui test de satisfaisabilité de toute formule de
la classe C appliqué a la formule G. L’algorithme PSAT (Fig. 4.1) permet
de déterminer pour une formule appartenant & C; si elle est satisfaisable.
On peut noter que PSAT consiste en n' appels & Resoude. Mais le prin-
cipal cotit de cet algorithme provient du calcul de séquences de littéraux
candidats. Ce calcul est effectué lors du test de reconnaissance de la classe
C;, donc cet algorithme a bien une complexité O(n'h(N)). O

Algorithme PSAT
Entrée: Un nombre 7, une formule F € C; ;
Sortie: Vrai si F est satisfaisable, Faux sinon ;

début
Si ¢ = 0 alors retourner Resoud¢(F);
h+0;
Trouver une séquence de littéraux candidats (I1,...,l;) pour F;
tant que (h < k) do;
h++;
[« lh;
si PSAT(: — 1, F;) = Vrai alors retourner Vrai;
F =Fa;
fin tant que;
retourner PSAT(: — 1, F);
fin.

Fia. 4.1 — Algorithme PSAT

Si C est une classe dont I’algorithme de reconnaissance a une com-
plexité en temps qui est O(g(N)), et que I’algorithme de test de satisfaisa-
bilité Resoude a une complexité O(h(N)) et que C est close par fixation,
alors on peut tester en temps O(n'(g(N) + h(N))) si une formule de la
classe C; est satisfalsable.

Proposition 32 Soit C une classe close par fization, avec un algorithme
de reconnaissance dont la complexité est O(g(N)) et un algorithme de test
de satisfaisabilité de complexité O(h(N)). Pour toute formule F € C;,
on peut générer toutes les solutions de F avec un délai O(n"t(g(N) +

h(N)))-

Preuve: Comme C; est clos par fixation, Noyau(F UU) € C;. Donc on
posséde un algorithme O(n'(g(N)+h(N))) pour tester si Noyau(F UU)

41

Chapitre 4. Générer en utilisant les résultats sur SAT

est satisfaisable. La proposition 2 implique le résultat. O

42

Chapitre 5

Impossibilité de générer & délai
polynoémial

Sommaire
5.1 Classes trivialement satisfaisables 43
52 Quad. 44
5.3 Hiérarchies {Q} et {A} 46

5.1 Classes trivialement satisfaisables

On peut remarquer que si une formule F ne contient pas de clause
totalement négative (resp. totalement positive), alors elle est trivialement
satisfaisable. Elle admet pour modele I’ensemble {x | « € V} (resp.
{~e |z eV},

Malheureusement ces deux classes ne sont formées sur aucune pro-
priété structurelle de la formule, et si F appartient & une telle classe,
il n’y a aucune raison pour que la méme formule F dans laquelle on a
donné la valeur vraie & un littéral quelconque | (F;) en fasse aussi partie.
Nous montrons ici que si P£NP, générer tous les modéles des formules
de ces classes ne peut étre fait avec un délai polynémial.

Définition 14 (7,,7_) On appelle classe T, la classe des formules dont
toutes les clauses contiennent au moins un littéral positif.

On appelle classe T_ la classe de formules dont toutes les clauses
contiennent au moins un littéral négatif.

Exemple: La formule {{z1, mxy, 23}, {z1, 2, 23}, {22, 723} } appartient
a la classe T;. La formule {{—xy, 29, 23, 24}, {22, 723}, {21} } appartient
a la classe T_.

43

Chapitre 5. Impossibilité de générer a délai polynémial

Proposition 33 Sl existe un algorithme de génération a délai polyné-
mial pour les formules de T_ (resp. Ty), alors il existe un algorithme de
génération a délai polynomial pour toute formule de logique proposition-
nelle.

Preuve: Soit F une formule quelconque avec un ensemble de variables
V. Soit z ¢ V. On construit la formule G = {C | C € Fetneg(C) #
QYu{C"|3C € Fineg(C)=0et C"' = CU{=z}}U{{z,~a;} | Va; € V}.
Soit M un modeéle de G. 51 —~z € M, alors nécessairement M doit conte-
nir les littéraux —a; pour tout ¢ (1 < i < n) car les clauses {z, ~x;}
appartiennent a G. Comme toutes les clauses de G contiennent un litté-
ral négatif, 'ensemble M = {—z; | 1 <7 < n}U{-z} est un modele de
G. Cet ensemble est donc le seul modéle de G contenant le littéral —z.
Tous les autres modéles de G contiennent donc z. On peut remarquer que
G. = F, donc si M est un modéle de G contenant z, alors M \ {z} est
un modéle de F. Si on peut générer & délai polynémial tous les modéles
de G, alors on obtient un moyen de générer & délai polynémial les mo-
deles de F (puisque le délai entre deux modeéles de F est au plus égal
a deux fois le délai entre deux modeles de G, ce qui reste polynémial).
Comme F est une formule quelconque, ceci n’est possible que si P=NP. O

Exemple: Soit F; = { {1,292, 23}, {21, "2g, na3}, {—x, 2y, ~as},
{x1, 29,25}, {23, 73, 724} } on peut construire la formule G; = {{-z, z,
L2, 1}3}, {xlv g, _'1’3}, {_‘1}1, Ty, _'1’5}, {_'Zv L1, 22, 1’5}, {l’z, 3, _'1’4},
{z,7x1}, {z,~a2}, {z,~as}, {2z, 24}, {z,725}}. On peut vérifier que
pour tout modéle M de Gy, on a soit —z € M, dans ce cas, le seul modéle
possible est M = {—xy, ~xq, na3, may, x5, 02}, soit 2 € M et M\ {z}
est un modele de Fj.

A moins que P ne soit égal & NP, si une classe C contient la classe
T_ (resp. T4), il est impossible de donner un algorithme de génération a
délai polynémial pour les formules de C.

5.2 Quad

Dalal [19] a présenté une classe de formules pour lesquelles il propose
un algorithme quadratique de résolution du probléme Sat, malheureuse-
ment, on ne peut pas générer les modeéles d’'une formule Quad avec un
délai polynomial, car Quad contient les classes Ty et T_.

Définition 15 (classe Racine) Une formule F appartient a la classe
Racine si ["une des conditions suivantes est satisfaite :

— F contient la clause vide,

7‘?'67;;

44

5.2, Quad

- Fel,

— Toute clause de F est de longueur deuz.

Une clause €’ est une sous-clause de la clause C' si C’ C (. Une sous-
clause C’ de C' est dite maximale, si | C'| — | C' |= 1. Pour toute clause
C, la clause —=C' est définie comme 'ensemble {I | [€ C'}, et la formule
~ C est I'ensemble {{[} | [€ C'}.

Exemple: La clause {1, 23} est une sous-clause maximale de la clause
C = {xy, ~xa, x5}, alors que la clause {x1} n’est qu’une sous-clause (pas
maximale) de C'. De méme, ~C est la clause {—xy, 29, 25} et ~ C est

la formule {{—a1}, {x2}, {—23}}.

Pour définir les formules Quad, Dalal utilise un ordre total sur ’en-
semble de toutes les clauses. Soit < un ordre total arbitraire sur un
ensemble de littéraux, cet ordre induit un ordre total sur les clauses:
C' < C ssi C" C C ou il existe un littéral [dans C'\ C' tel que [< ¢ pour
tout littéral ¢ de C'"\ C' (on remarque que la relation n’est pas réflexive
C 4 (). < détermine un ordre total sur les clauses de F. Pour toute
clause de F, < détermine en outre un ordre total sur ses sous-clauses
maximales. Dans la définition présentée ci-dessous, on utilisera les nota-
tions premiére ou suivante dans le contexte de cet ordre sur les clauses
et sur les sous-clauses maximales.

Définition 16 (Quad) Une formule F appartient a la classe Quad si
["une des conditions suivantes est vérifiée.

— Noyau(F) appartient a la classe Racine,

~ Soit C" la premiére sous-clause maximale de la premiére clause C de
Noyau(F) pour laquelle Noyau(F U{~C"}) appartient a la classe
Racine. Une des deux propriétés suivantes est vérifice.

— Noyau(F U {=C"}) est satisfaisable,
— La formule (F\{C})U{C"} appartient & Quad.

Dalal [19] a présenté un algorithme quadratique (O(N?k) oit N est la
longueur totale de la formule et & la longueur de la plus grande clause)
permettant de tester si une formule appartient & la classe Quad. Il propose
en outre un algorithme de la méme complexité (O(N?k)) pour tester la
satisfaisabilité de toute formule Quad.

Malheureusement la classe Quad contient les classes T_ et Ty, la pro-
position 33 implique donc que si P est différent de NP, il n’existe aucun
algorithme a délai polynémial pouvant générer les modeéles de toutes les
formules de la classe Quad.

45

Chapitre 5. Impossibilité de générer a délai polynémial

5.3 Hiérarchies {Q} et {A}

Dalal et Etherington [20] ont étendu les résultats de Gallo et Scutella
[27] (Chap. 4), ils ont présenté deux hiérarchies de formules {2} et {A}
dont la satisfaisabilité peut étre testée en temps polynémial. Malheureu-
sement, pour tout k£ > 0, 7, et 7_ sont incluses dans Ay et €, donc
il est impossible de générer & délai polynémial les modéles des formules
appartenant aux classes Ay et Qy (k> 0).

Dalal et Etherington utilisent pour définir les hiérarchies {2} et {A}
la notion de multi-sous-ensemble C & la place de la notion classique de
sous-ensemble C. On dit que {Ay, Ay,..., Ax} © {By, By, ..., B} ssi
pour tout ¢ (1 <7 < k), il existe j (1 <j <) tel que A; C B;.

On rappelle que I'on note Lit(F)’ensemble des littéraux apparaissant
dans la formule F.

Définition 17 (hiérarchies {A} et {Q}) Dalal et Etherington ont dé-

fini récursivement les classes Ay, et Qy de la fagon suivante.
— F € Ag ssi une des propriétés suivantes est vérifiée :

~ la clause vide appartient a F ;
- Fe 7tl— 5
-FeT;

— 1l existe une clause unitaire positive {x} € F telle que F, €

Ao.
— Pour tout k, F € Qy, ssi ['une des propriété suivante est vérifiée :

*.FEAk,’

— pour tout littéral | € Lit(F), on a Noyau(F U {l}) € Ay, et
Noyau(FUA{l}) € Qy ;

— pour tout littéral | € Lit(F), on a Noyau(F U {l}) C F et
Noyau(FU{z}) € Ay

Ag est 'ensemble des formules pour lesquelles on peut déterminer la
satisfaisabilité immédiatement. La classe €2 contient les formules pour
lesquelles propager la valeur vrai pour n’importe quel littéral produit
une formule appartenant soit & €1, soit & Ay. Les classes Ay contiennent
toutes les formules pour lesquelles il existe un littéral dont la propagation
de la valeur produit une formule appartenant soit a €2_; soit a Ay.

On remarque que 74 € Ag et 72 € Ag comme en plus Ay € Qy C
Ajy1, on obtient que pour tout k7. UT_ C Ap et 7L UT- C Q4. La
proposition 33 implique donc que si P est différent de NP, il n’existe
pas d’algorithme polynémial pour générer tous les modéles des formules

appartenant aux classes Ay et Q (pour k > 0).

46

Chapitre 6

Conclusion

Dans cette partie, on a pu voir que pour la quasi totalité des classes
polynémiales, on peut trouver un algorithme & délai polynémial pour
générer toutes les solutions.

Sion connait une méthode pour tester la satisfaisabilité des formules
d’une classe, alors cette méthode utilise une propriété structurelle de la
classe. On s’appuie sur cette structuration de la formule pour pouvoir en
générer tous les modéles.

Les classes polynémiales pour lesquelles nous ne pouvons pas générer
les modeles a délai polynémial, sont celles contenant les classes T4 (les
formules ayant au moins un littéral positif dans chaque clause) ou/et T_
(les formules ayant au moins un littéral négatif dans chaque clause). A
moins que NP ne soit égal a P, il n’existe pas d’algorithme de génération
a délai polynémial pour ces formules.

Classe Reconnaissance Satisfaisabilité Génération

Horn O(N) O(N) O(nN)

Horn renommable | O(N) O(N) O(nN)

Binaires O(N) O(N) O(nN)

Equilibrées polynémial O(N) O(nN)

Iy O(n*N) O(n*N) O(n*T1N)
I';,-renommable NP-complet O(n*N) O(n*+1N)

Quad O(N?) O(N?) impossible si P#NP
Q et Ay O(nkt1) O(nf+h) impossible si P#NP
Presque Horn(*) | O(nN) O(1) O(nN)

g-Horn O(N) O(N) O(nN)

(*) sans clause unitaire

FiG. 6.1 — Génération a délai polynémial: tableau provisoire

Dans les parties suivantes, nous étudions d’autres classes de formules
pour lesquelles on peut générer toutes les solutions avec un délai po-

47

Chapitre 6. Conclusion

lyémial. Un tableau complet est présenté dans la conclusion générale de
cette thése.

48

Deuxiéme partie

Formules Horn étendues

49

Chapitre 1

Présentation

Nous avons vu dans le Chapitre 2 de la Partie I que si une classe de
formules vérifie les deux propriétés P1 et P2, alors on peut générer toutes
les solutions des formules de cette classe avec un délai O(nN) (ot n est
le nombre de variables et N la longueur totale de la formule) avec comme
unique outil la résolution unitaire. La premiére de ces propriétés repose
sur une stabilité de la classe par la résolution unitaire, la seconde requiert
que toute formule de la classe ne comportant pas de clause unitaire soit
satisfaisable.

Nous étudions dans cette partie un ensemble de classes de formules,
qui vérifient encore ces deux propriétés. La premiére de ces classes, la
classe des formules Horn étendues a été introduite par Chandru et Hoo-
ker [12]. Nous présentons dans le Chapitre 2 la définition de cette classe,
nous montrons comment on peut tester en temps linéaire la satisfaisa-
bilité d’une telle formule, et nous montrons qu’on peut générer & délai
polynémial les modéles de telles formules. Nous présentons aussi l'origine
de ces formules. Elles sont issues des résultats de Chandrasekaran [10] sur
la programmation linéaire ; nous expliquons ici comment ce résultat s’ap-
plique aux formules Horn étendues.

Malheureusement, il n’existe pas actuellement d’algorithme polyné-
mial pour tester si une formule est Horn étendue. Swaminathan et Wag-
ner [46] ont donc présenté une sous-classe des formules Horn étendues
qu’ils ont appelée classe Horn étendue simple. Ils ont proposé un algo-
rithme de reconnaissance quadratique pour les formules de cette classe.
Schlipf et al. [44] ont remarqué que si on relachait une des contraintes de
la définition des formules Horn étendues (resp. Horn étendues simples),
on obtenait une classe plus grande qui avait les mémes propriétés. Nous
avons appelé cette classe les formules Horn élargies (resp. Horn élargies
simples). Nous présentons dans le Chapitre 3, une étude de la structure
des formules Horn élargies simples qui nous conduit a un algorithme li-
néaire de reconnaissance de ces formules. Nous présentons en outre un
algorithme linéaire permettant de tester si une formule est Horn étendue
simple.

51

Chapitre 1.

Présentation

52

Chapitre 2

Les formules Horn étendues

Sommaire

2.1 Présentation 53

2.2 Definitions 54

2.3 Satisfaisabilité et génération a délai po-
lynémial 55

24 Origine oot i ittt e 58
2.4.1 Préliminaires 58
2.4.2 Théoréme de Chandrasekaran 59
2.4.3 Motivations des formules Horn étendues . 60
244 Exemple 0 0. 61

25 Conclusion 62

2.1 Présentation

Chandru et Hooker[12] ont présenté la classe des formules Horn éten-
dues, il s’agit d’une généralisation de la classe des formules de Horn pour
laquelle le probleme SAT est aussi facile & traiter que pour Horn, en
utilisant comme pour Horn la résolution unitaire. Nous allons voir que
cette propriété permet aussi de générer toutes les solutions pour de telles
formules avec un délai O(nN) (ot N est la longueur totale de la formule
et n le nombre de ses variables).

Une formule est Horn étendue si ses variables correspondent aux arcs
d’une arborescence enracinée (i.e. un arbre orienté dans lequel tous les
arcs sont orientés en partant de la racine), de telle facon que pour chaque
clause les variables apparaissant positivement étiquettent un chemin et
les variables apparaissant négativement étiquettent un ensemble de che-
mins commengcant & la racine plus, le cas échéant, un chemin commencant
au méme sommet que le chemin positif. Les formules de Horn sont celles

33

Chapitre 2. Les formules Horn étendues

pour lesquelles I’arbre associé est une étoile (i.e. 'arborescence enracinée
dont tous les arcs partent de la racine).

La découverte de ces formules découle du théoréme de Chandraseka-
ran. Ce théoréme caractérise les ensembles d’inéquations linéaires pour
lesquelles un solution 0-1 peut toujours étre trouvée (s’il en existe une)
en arrondissant une solution réelle, qui elle peut étre calculée par pro-
grammation linéaire. Ils ont prouvé qu’un ensemble d’inégalités avec des
coefficients dans 0, 1, -1 correspondant a une arborescence telle que dé-
crite ci-dessus satisfait les conditions du théoréme de Chandrasekaran.

2.2 Définitions

Nous rappelons les notations présentées dans la Partie I et présentons
ensuite la définition des formules Horn étendues.

Une arborescence est un graphe orienté 7', dont le graphe sous-jacent
est un arbre, et qui a exactement un noeud de degré entrant égal & zéro.
Cet sommet est appelé la racine de T'.

On rappelle que dans toute cette partie, F' désigne une formule et
V' l’ensemble de ses variables. Soit /' € V et 1" une arborescence dont
les arcs sont étiquetés (de maniére unique) par les éléments de U. Soit
x € U, on notera @ 'arc de T' étiqueté par . On note Ty le sous-graphe
orienté de T' formé par les arcs de T' étiquetés par les éléments de W.

On rappelle que nous travaillons en utilisant la forme normale conjonc-
tive; une formule est donc vue comme un ensemble de clauses, et une
clause comme un ensemble de littéraux. Si C' est une clause, pos(C) =
{r eV |z eC}, et neg(C) ={ax € V| -x & C},si x est une variable
on a aussi CNeg(z) ={C € F/-z € C} et CPos(z)={C € F/xz € C}.

Définition 18 Soit T une arborescence avec une racine r et des arcs
étiquetés par les variables de V' (de maniére unique). Soit C' € F une
clause telle que T,oycy est un chemin orienté (qui peul étre vide).

La clause C' est Horn étendue par rapport a T, si neg(C) = Ny U
e UNg avee Ny N; =0 (1 <0< j<k), Tn, est un chemin orienté
qui commence & la racine r (pour 1 <1 <k —1), et Ty, est un chemin
orienté (qui peut étre vide) qui commence au méme sommet que Tpos(c)-

Fest Horn étendue par rapport a T', si chaque clause ' € F est Horn
étendue par rapport a T. Une formule est Horn étendue si elle est Horn
étendue par rapport a une arborescence.

Exemple: Soit F la formule telle que Fy; = {Cy,Cy, C3,Cy}. Ou € =
{—x1, 29, 24, x5, n27 }, Cy = {—ay, nwg, nwg, 25}, C5 = {1, 9, "3, "2y, 25}
et Cy = {—x1, ~x3, 726 }. On peut voir (Fig. 2.1) que la clause C est Horn
étendue par rapport a 1. Le chemin comportant ’arc T# commence au

méme sommet que le chemin correspondant aux variables x4 et x5, on

54

2.3. Satisfaisabilité et génération a délar polynémial

peut en outre voir que le chemin 7,75 commence a la racine de ’arbo-
rescence. Le lecteur pourra vérifier sur la Figure 2.2 que toutes les clauses
de F} sont Horn étendues par rapport & T'. F; est donc Horn étendue par
rapport a T'. On peut donc dire que F} est Horn étendue.

FiG. 2.1 = La clause Cy est Horn étendue par rapport a T

A C
4 X7
Xﬁ X/ x6R
B D F G
x5 l
E

FiG. 2.2 — Arborescence T dont les arcs sont étiquetés par les variables

de F1

2.3 Satisfaisabilité et génération a délai po-
lynémial
Chandru et Hooker [12] ont remarqué que la résolution unitaire, per-
met comme pour Horn, de tester si les formules Horn étendues sont sa-
tisfaisables. Nous expliquons ici comment ce processus fonctionne. Nous

prouvons en outre que ’on peut générer toutes les solutions des formules
Horn étendues avec un délai O(niV).

35

Chapitre 2. Les formules Horn étendues

On rappelle le principe de la résolution unitaire, on dit qu’une clause
C' est dérivable de F par résolution unitaire s’il existe une suite de clauses
Ci,...,C, telle que C, = C et pour tout ¢ (1 <7 < p); ou bien C; € F
ou bien il existe j, k < 4 et un littéral [vérifiant C; = C;U{l} et C}, = {I}.

Soit Unit(F) 'ensemble des clauses unitaires dérivables de F par
résolution unitaire. On sait que si Unit(F) n’est pas cohérent alors F est
non satisfaisable. La réciproque est fausse dans le cas général.

Soit Noyau(F) I’ensemble des clauses obtenues a partir de F en 6tant
les clauses qui contiennent un élément de Unit(F), et en supprimant dans
les clauses restantes tous les complémentaires des littéraux de Unit(F).
Exemple: Soit Iy, = { {—ay, a3, "2y, w6, x5}, {21, 23, 25, "6}, {271,
&y, Ty, X, L), {22, 26}, {Txe}}. On a Unit(Fy) = {xq, na6} et
Noyau(Fy) = {—ay, a3, ~vg, x5}, {123, ~2y, 27}

Proposition 34 Si F' est une formule Horn étendue, alors Noyau(F')
est aussi une formule Horn étendue.

Preuve: Soit T' une arborescence telle que F' est Horn étendue par rap-
port & T'. Soit V' I’ensemble des variables de F' et Viy ’ensemble des va-
riables de Noyau(F'). Soit T I'arborescence étiquetée par les variables
de Viy obtenue en supprimant de T' tous les arcs étiquetés par les variables
de V'\ Vi et en fusionnant 'origine et I’extrémité de tels arcs. Soit X un
ensemble de variables, si les variables de X étiquettent un chemin dans 7'
alors les variables de X NV étiquettent un chemin dans T. Soit C'y une
clause de Noyau(F'), il existe une clause C' € F telle que Cy = C' N V.
Comme (' est Horn étendue par rapport a 7', on peut déduire que Cy
est Horn étendue par rapport a Ty. Donc Noyau(F') est Horn étendue. O

Exemple: Comme F, est Horn étendue par rapport a ’arborescence
présentée Figure 2.3, on en déduit que Noyau(F3) est Horn étendue par
rapport a l’arborescence de la Figure 2.4.

M
i
x8

FiG. 2.3 — F, est Horn étendue par rapport a T

56

2.3. Satisfaisabilité et génération a délar polynémial

X1 X8
X3

x/ X%\XS

F1G. 2.4 — Noyau(Fy) est Horn étendue par rapport a T'

Proposition 35 Soit F' une formule Horn étendue, si F' ne contient pas
de clause unitaire, alors I' est satisfaisable.

Preuve: Soit T une arborescence telle que F' soit Horn étendue par rap-
port a T'. Soit profondeurr(x) une fonction qui indique pour chaque va-
riable x & quelle distance I’arc @ est de la racine (on pose profondeury () =
0 pour toutes les variables telles que @ est un arc sortant de la racine).
Soit M = {x | profondeury(x)modulo2 = 1}U{—x | profondeurs(x) modulo?2 =
0}, On va prouver que M est un modele pour F. Soit ' une clause
de F', on va prouver que C' N M # (). Par hypothése, C' contient au
moins deux littéraux. Comme F' est Horn étendue par rapport a T on
a:neg(C) =Ny U...UN,avec NOAN; =0 (1 <i<j<k), Ty, est
un chemin orienté qui commence a la racine r (pour 1 < i < k — 1), et
Ty, est un chemin orienté (qui peut étre vide) qui commence au méme

k
sommet que Tp,4c)-

~ neg(C') = 0. On sait que Tpos(cy est un chemin dans T" donc deux
variables de pos(C') apparaissant a deux niveaux successifs de T
donc une au moins de ces variables est valuée positivement, donc
C' est satisfaite par M.

~ neg(C) £ 0 and Ny # 0.

Si pos(C') # 0, ceci implique qu’il existe un sommet s de 7" et deux
variables z et y telles que 2 € pos(C), y € neg(C) et @ a pour
origine s tout comme /. D’ott profondeury(x) = profondeury(y),
donc un des deux littéraux est vrai. La clause C' est donc satisfaite

par M.

Si pos(C) = 0 alors soit card(N) > 2 dans ce cas T, est un
chemin dont deux arcs sont & des niveaux différents et donc 'un
au moins est de profondeur paire, soit £ > 1 et on est dans le cas
suivant.

~ neg(C) # 0 and k& > 1, ceci implique que Ty, est un chemin
qui commence & la racine de T, soit @ le premier arc de Ty,,
profondeury(x) = 0, donc ~x € M. La clause C est donc satis-
faite par M.

57

Chapitre 2. Les formules Horn étendues

a

Exemple: {—xy, ~as, 24, x5, ¥7, "5} est donc un modele de Noyau(Fy).

Ces deux propositions conduisent naturellement & un algorithme pour
tester la satisfaisabilité des formules Horn étendues. 1l suffit de calculer
Unit(F'), si cet ensemble est cohérent, alors F' est satisfaisable puisque
I'on sait que Noyau(F') est Horn étendu et qu’il ne contient pas de clause
unitaire.

Exemple: {—xy, xq, 7x3, 24, 5, 726, T7, 725 } est un modeéle de Fy.

Proposition 36 Si F' est Horn étendue, alors pour toult ensemble de
clauses unitaires U, FF'UU est une formule Horn étendue.

Preuve: Soit T une arborescence reconnaissant F', toute clause unitaire
C est Horn étendue par rapport & T'. 5i €' est une clause unitaire posi-
tive, C' = {z}, alors I’arc @ forme obligatoirement un chemin dans 7'.
Si C' = {—z} est une clause unitaire négative, alors @ forme un chemin
dans T. L’origine de 7 est le sommet d’origine du chemin (vide) corres-
pondant aux littéraux positifs de C'. O

On a prouvé (Corollaire. 4, Chap. 2, Part. I) que si une classe de
formules vérifie les propriétés suivantes, alors on peut générer tous les
modeles de toute formule de la classe avec un délai O(nN) en n’utilisant
que la résolution unitaire.

Propriété 1 (P1) C vérifie P1, si pour toute formule F € C, pour tout
ensemble de clauses unitaires U, on a Noyau(FUU) € C.

Propriété 2 (P2) C vérifie P2, lorsque pour toute formule F € C, le
fait que toute clause de F soit de longueur supérieure ou égale a deur,
implique que F soit satisfaisable.

On déduit des Prop. 34, 35 et 36 et du Corollaire 4 que 1’on peut gé-
nérer avec un délai O(nN) tous les modéles d’une formule Horn étendue.

2.4 Origine

2.4.1 Préliminaires

La définition des formules Horn étendues [12] est motivée par des
résultats en programmation linéaire appliqués a une modélisation pos-
sible du probléme SAT. Chandru et Hooker ont créé les formules Horn
étendues en recherchant une famille de formules dont la matrice associée
vérifie toujours les propriétés du théoréme de Chandrasekaran.

38

2.4. Origine

On rappelle que I'on travaille en Forme Normale Conjonctive et qu’'une
formule est donc vue comme un ensemble de clauses, qui sont elles mémes
des ensembles de littéraux.

Une clause, par exemple {x1, ~xy}, peut étre représentée par une
inéquation sur des variables binaires, dans notre cas x; + (1 — a2) > 1,
ot x1 et x5 doivent prendre la valeur 0 ou 1. On dira que z; est vrai si
x; =1, et faux si x; = 0. L'inégalité ci-dessus peut s’écrire x1 — x93 > 0,
plus généralement, on peut mettre ces inégalités sous la forme ax > aq,
ol a est un vecteur ligne dont les composantes sont dans {0,1, —1}, x est
un vecteur colonne (xy, xq,...,2,), et ag est égal & 1 moins le nombre de
—1 dans a. Donc une formule contenant m clauses peut étre représentée
comme un systéme d’inéquations Haz > b, dans lequel H est une matrice
m X n, x est binaire. Il est clair que la formule est satisfaisable si et
seulement si le systéme suivant a une solution :

—x > —c (2.1)
x>0

Ot e est un vecteur de n uns et x est un vecteur colonne d’entiers. La re-
laxation linéaire de (2.1) est obtenue en retirant la contrainte portant sur
le caractére entier de z. La programmation linéaire trouve une solution
de la relaxation linéaire si une telle solution existe.

2.4.2 Théoréme de Chandrasekaran

Dans le cas général, un systéme d’équations du type (2.1) n’a pas
forcément de solution entiére, Chandrasekaran [10] a exposé une condi-
tion suffisante pour qu’un systéme d’inéquations ait une solution entiére.
C’est cette condition qui a été utilisée par Chandru et Hooker [12] pour
créer les formules Horn étendues.

Soit [a| le plus petit entier supérieur ou égal & «, et pour un vecteur
x, la iéme composante du vecteur [x] est égale a [a;].

Théoréme 37 (Chandrasekaran[10]) Considérons le systéme linéaire
Ax > b,z >0, dans lequel A est une matrice entiére m x n et b un vec-
teur entier. Soit T une matrice carrée n X n non singuliére qui vérifie les
conditions suivantes:

1. T et T~ sont entiéres ;

2. Chaque ligne de T~ contient au plus une entrée négative, et toules
ces entrées sont des —1 ;

3. Chaque ligne de AT™" contient au plus une entrée négative, et toutes
ces entrées sont des —1.

59

Chapitre 2. Les formules Horn étendues

Alors si x est une solution du systéme linéaire, il en sera de méme pour
le vecteur T[T a].

2.4.3 Motivations des formules Horn étendues

On rappelle qu'une formule est satisfaisable si et seulement si un sys-
téme d’inégalités de la forme (2.1) a une solution. Chandru et Hooker
[12] utilisent le théoréme 37 pour identifier les conditions pour lesquelles
(2.1) a une solution si sa relaxation linéaire en posséde une. Nous al-
lons ici montrer que toute formule Horn étendue vérifie les conditions du
théoréme de Chandrasekaran.

Proposition 38 Soit F' une formule Horn étendue par rapport a un
arbre T'. Soit H la matrice correspondant a la formule F', et A, la matrice

(%)

Ou J est la matrice identité.
St I est Horn étendue, alors A vérifie les propriétés du théoréme de
Chandrasekaran.

telle que :

Preuve: On va prouver qu’il existe une matrice de transition J telle que
T et T-' sont entiéres, chaque ligne de T~! et de AT~ contient au plus
une entrée négative, qui de plus ne peut étre différente de —1.

On remarque d’abord que

-1
- (7)
On doit donc prouver que chaque ligne de T~! contient au plus une entrée
positive (égale a 1) et une entrée négative (égale a -1), et que chaque ligne
de HT ' contient au plus une entrée négative (qui doit étre égale a —1).
Soit 7! la matrice telle que ses colonnes sont indexées par les som-
mets de I'arborescence (sauf la racine) et ses lignes sont indexées par les
arcs de I’arborescence (i.e. par les variables de la formule). ! = —1 si
I'arc Z a pour extrémité le sommet s. T7! = 1 si 'arc @ a pour ori-
gine le sommet s. 7! = 0 dans tous les autres cas. Chaque arc n’ayant
qu’une origine et une extrémité, il est facile de voir, que T=1 vérifie les
conditions.
Les éléments de la matrice 5T, dont les lignes sont indexées par les
clauses de F' et les colonnes par les sommets de ’arborescence T', vérifient
la propriété suivante pour tout sommet s de T' et toute clause ' € F':

HTCL, = card({x € neg(C) | T entrant en s}) (2.2)
—card({x € neg(C) | @ sortant de s})
tcard({x € pos(C) | @ sortant de s})
—card({x € pos(C) | @ entrant en s})

60

2.4. Origine

Pour chaque clause C' € F', il y a donc au plus un sommet pour lequel
cette somme est négative (c’est le dernier sommet de Tpos(c)), mais il ne
peut pas étre inférieur & —1. Donc HT ™! vérifie bien la propriété: au
maximum une entrée négative par ligne et cette entrée doit étre égale a
—1.

JT~! est une matrice triangulaire (si on ordonne les sommets et les
arcs selon un parcours en profondeur de I'arborescence), dont tous les
éléments sur la diagonale sont égaux a —1. Son déterminant est donc
+1. T est donc une matrice entiére.

La matrice A vérifie donc bien les conditions du théoréme de Chan-
drasekaran. O

Corollaire 39 Si F' est Horn étendue alors on peut tester en temps po-
lynéomial si F' est satisfaisable.

2.4.4 Exemple

Exemple: Pour la formule Fy = {Cy, (s, Cs, Cy} (ot Cy = {—ay, nag, x4, 5, "7},
02 = {_'1'1, T3, Ty, 1’5}, C13 = {xlv L2, T3, T4, _'1'5} et 04 = {_'1?1, I3, _'x6})
définie dans la section 2.2, on a les matrices suivantes :

La matrice H représente la formule elle méme, chaque ligne représente
une clause et chaque colonne représente une variable, un 1 indique que
la variable apparait dans pos(C') un -1 indique que la variable apparait
dans neg(C'), un 0 signifie que la variable n’apparait pas dans C.

T Lo r3 Ta Ts Te X7
Ci/-1 -1 0 1 1 0 -1
;-1 0 -1 -1 1 0 0
Ca| 1 1 -1 -1 -1 0 0
Cy\—-1 0 -1 0 0 -1 0

H =

La matrice J~! représente I’arbre T' (Figure. 2.2). Les colonnes de J~*
sont les sommets de T', les lignes de T~! sont les arcs de T'. On affecte 1
lorsque I’arc a pour origine le sommet, -1 si le sommet est I'extrémité de
I’arc et 0 si ’arc ne touche pas le sommet.

A B C D FEF F

x (—1 0 0 0 0 0 0

2l 1 =1 0 0 0 0 0

z3| 0 0 -1 0 0 0 0

T'= 24| 0 0 1 -1 0 0 0
zs| 0 0 0 1 -1 0 0

ze| 0 0 1 0 0 -1 0

x7 \ 0 0 1 0 0 0 -1

61

Chapitre 2. Les formules Horn étendues

La matrice HT " est la multiplication des deux précédentes matrices.

A B C D FE F G

Ci /[0 1 0 0o -1 0 1
C 1 0 0 2 =1 0 0

-1 _ Lo
HI™ = Cs31 0 =1 0 0 1 0 0
Cy\ 1 0 1 -1 0 1 0

2.5 Conclusion

Les formules Horn étendues sont intéressantes, on peut tester leur
satisfaisabilité en temps linéaire et générer leurs solutions avec un délai
O(nN) en n’utilisant qu’un outil trés simple, la résolution unitaire. Il n’y
a malheureusement pas d’algorithme connu pour la reconnaissance des
formules Horn étendues. Au chapitre suivant nous présentons la classe des
formules Horn étendues simples introduite par Swaminathan et Wagner
[46] pour laquelle nous proposons un algorithme de reconnaissance en
temps linéaire, cette classe de formules est une restriction de la classe
Horn étendue, qui garde les propriétés importantes de cette classe. Le
test de satisfaisabilité et la génération & délai polynémial ne nécessitent
pas d’autre outil que la résolution unitaire.

62

Chapitre 3

Les formules Horn étendues et
élargies simples

Sommaire

3.1 Introduction 63

3.2 Definitionso 64

3.3 Satisfaisabilité et génération a délai po-
lynémial 66

34 Agrégats. 00000 67

3.5 Reconnaissance de formules Horn élar-
giessimples,, 71

3.6 Calcul des arborescences acceptables .. 76

3.7 Reconnaissance des formules Horn éten-

dues simples 80
3.8 Unecasfacile 83
3.9 Calcul des arborescences viables 85

3.1 Introduction

Comme on ne sait pas encore reconnaitre efficacement les formules
Horn étendues, Swaminathan et Wagner [46] ont introduit une restric-
tion qu’ils ont appelée classe des formules Horn étendues simples pour
laquelle ils ont proposé un algorithme quadratique de reconnaissance.
Nous étudions ici cette classe ainsi qu’une extension proposée par Schlipf
et al [44] que nous avons nommeée classe des formules de Horn élargies
simples. Nous proposons des algorithmes linéaires pour reconnaitre les
formules Horn étendues simples et Horn élargies simples. Les résultats
présentés dans ce chapitre sont tirés d’un article de Benoist et Hébrard

[4].

63

Chapitre 3. Les formules Horn étendues et élargies simples

Dans ce chapitre, nous allons étudier les formules Horn étendues
simples et Horn élargies simples. Dans un premier temps nous présen-
tons les définitions de ces formules. Nous étudions ensuite les propriétés
intéressantes de ces formules : le test de satisfaisabilité linéaire n’utilisant
que la résolution unitaire, ainsi que la possibilité de générer avec un délai
O(nN) (ou N représente la longueur totale de la formule et n le nombre
de ses variables) toutes les solutions de ces formules. Nous présentons
ensuite un algorithme linéaire de reconnaissance des formules Horn élar-
gies simples. Cet algorithme est basé sur I’étude de classes d’équivalences
sur les variables, que nous appelons: les agrégats. Nous étudions la struc-
ture des agrégats des formules Horn élargies simples, ce qui nous permet
de proposer un algorithme linéaire de reconnaissance. Nous présentons
ensuite une modification de cet algorithme qui permet de reconnaitre
les formules Horn étendues simples en un temps linéaire. Si de plus on
suppose que la formule étudiée ne contient pas de variable monotone po-
sitive, alors cet algorithme n’utilise que des structures de données assez
simples.

3.2 Définitions

Nous présentons les notations dont on va avoir besoin dans ce cha-
pitre, ainsi que les définitions des formules Horn étendues et Horn élargies
ainsi que des formules Horn étendues simples et Horn élargies simples qui
vont étre étudiées dans ce chapitre.

Une arborescence T' est un graphe orienté dont le graphe non orienté
sous-jacent est un arbre et qui a exactement un noeud dont le degré
entrant est zéro: ce noeud est appelé la racine de T'. Si T' n’a qu’un arc
dont l'origine est r, on dira que T" a un pied, et on notera cet arc foot(T)).

Soit U C V et T une arborescence avec des arcs étiquetés (de maniére
unique) par les éléments de U. Soit z € U, on notera @ 'arc de T étiqueté
par z. Soit ,y € U, on dit que @ est le parent de ¥ dans T, §'il existe
un sommet v qui est Uextrémité de @ et lorigine de 7. S’il existe un
chemin orienté commencant avec @ et finissant avec I on dit que 7 est
un ancétre de 7. Soit W C U. On note Ty le sous-graphe orienté de T
formé par les arcs de T' étiquetés par les éléments de W.

On rappelle que si C' est une clause, pos(C) = {x € V | x € C}, et
neg(C) ={x € V| mx € C}, si x est une variable on a aussi C' Neg(x) =
{C e F|/-xzeC}et CPos(x)={C € F/xz e C}.

Définition 19 Soit T une arborescence avec une racine r el des arcs
étiquetés par les variables de V' (de maniére unique). Soit C' € F une
clause telle que T,oycy est un chemin orienté (qui peul étre vide).

1. La clause C' est Horn élargie simple par rapport a T' si Tjeyc) est
une arborescence dont la racine est r.

64

3.2. Définitions

2. La clause C est Horn élargie par rapport a T si neg(C') = Ny U Ny,
avec Ty, une arborescence dont la racine est r et Txn, un che-
min orienté (qui peut étre vide) qui commence au méme point que

Tpos(C) .

3. La clause C est Horn étendue simple par rapport & T si neg(C') =
Ny U...UNg, avee NyON; =0 (1 <i<j<k) et Ty, est un
chemin orienté qui commence & la racine r (1 < i <k).

4. La clause C' est Horn étendue par rapport a T, si neg(C) = Ny U
o UNg avee Ny N; =0 (1 <0< j < k), T, est un chemin
orienté qui commence & la racine r (pour 1 <1 < k—1), et T,
est un chemin orienté (qui peut étre vide) qui commence au méme
sommet que Tpyc)-

F est Horn élargie simple (Horn élargie, Horn étendue simple, Horn
étendue) par rapport & T, si chaque clause C' € F' est Horn élargie simple
(Horn élargie, Horn étendue simple, Horn étendue) par rapport a 7.
Une formule est Horn élargie simple (Horn élargie, Horn étendue simple,
Horn étendue) si elle est Horn élargie simple (Horn élargie, Horn étendue
simple, Horn étendue) par rapport a une arborescence. Lorsqu’aucune
confusion ne sera possible, nous écrirons 1" reconnait I ala place de I est
Horn élargie simple (Horn élargie, Horn étendue simple, Horn étendue)
par rapport & T
Exemple: La clause {—xy, x5, 24, "5, 26, 727, "wg} est Horn élargie
simple par rapport & l'arborescence T' en Fig. 3.1.

x1 r x5
//\\ < X6
X2 S~ x8

x3

x4

FiG. 3.1 — Arborescence T

Exemple: La clause { a1, 23, x4, 75, 726, 727} est Horn étendue simple
par rapport a ’arborescence T' en Fig. 3.2.

On peut remarquer que toute formule Horn étendue est Horn élargie
et que de méme toute formule Horn étendue simple est Horn élargie
simple.

65

Chapitre 3. Les formules Horn étendues et élargies simples

x1 r x5
X2 o~ x8

x3

x4

V = pos(C)
77777 - neg(©)

FiG. 3.2 — Arborescence T

3.3 Satisfaisabilité et génération a délai po-
lynémial

Comme les formules Horn élargies simples ne sont pas un sous-ensemble
des formules Horn étendues, nous devons prouver le méme type de ré-
sultats que ceux obtenus au chapitre précédent. On va prouver que 1’on
peut tester en temps linéaire la satisfaisabilité d’une formule Horn élargie
simple et qu’il est possible d’en générer toutes les solutions avec un délai
O(nN) en n’utilisant que la résolution unitaire.

Proposition 40 Si F' est une formule Horn élargie simple, alors pour
tout U ensemble de clauses unitaires, Noyau(F U U) est Horn élargie
simple.

Preuve: Soit T' une arborescence reconnaissant F'. Soit V' 1’ensemble des
variables de F' et Viy ’ensemble des variables de Noyau(F UU). Soit Ty
I’arborescence étiquetée par les variables de Vi obtenue en supprimant
de T tous les arcs étiquetés par les variables de V' '\ Vy et en fusionnant
I'origine et I'extrémité de tels arcs. Soit X un ensemble de variables, si
les variables de X étiquettent un chemin dans 7', alors les variables de
X N Vy étiquettent un chemin dans 7Ty. Si les variables de X étiquettent
une arborescence dans T', alors les variables de X N Vy étiquettent une
arborescence dans Ty. Soit Cy une clause de Noyau(F U U), il existe
une clause C' € F telle que Cy = C' N Vy (car U ne contient que des
clauses unitaires). Comme C est Horn élargie simple par rapport a T,
on peut déduire que Cy est Horn élargie simple par rapport a Ty. Donc
Noyau(F UU) est Horn étendue simple. O

Proposition 41 Si F' est Horn élargie simple et F' ne contient pas de
clause unitaire, alors F est satifaisable.

Preuve : Soit T une arborescence reconnaissant F. Soit M; = {-z | @
a pour origine r} et My = {z | « € V,-x & M;}. On va prouver que

66

3.4. Agrégats

M = M; U M, est un modeéle de F'. Soit C' une clause de F' (| C' |> 2 car
F ne contient pas de clause unitaire). C' est Horn élargie simple par rap-
port & T', donc T},.4(c) est un chemin et 7). () est une arborescence dont
la racine est r. Si | pos(C) |> 2 alors une au moins des deux variables
est valuée positivement (méme dans le cas ou le chemin correspondant
a pos(C') commence a la racine de T', un au moins de ces arcs n’a pas
pour origine r). C est donc satisfaite dans ce cas. Si | pos(C) |< 2, alors
| neg(C) |> 1 donc il existe y € neg(C') tel que ¥ a pour origine r, donc
C' est satisfaite. O

On déduit des Prop. 40, 41 et du Corollaire 4 (Partie I, Chap. 2) que
I'on peut générer avec un délai O(nN) tous les modeles d'une formule
Horn élargie simple.

La classe Horn étendue simple est incluse dans la classe Horn élar-
gie simple, il existe donc un algorithme linéaire permettant de tester si
une telle formule est satisfaisable et il existe aussi un algorithme a délai
O(nN) donnant toutes les solutions d’une formule Horn étendue simple.

3.4 Agrégats

Nous présentons dans cette section, la notion d’agrégat. Cette notion,
intrinséque a toute formule, regroupe les variables en classes d’équiva-
lences. Nous étudions les propriétés de ces classes d’équivalences pour
les formules Horn élargies simples. Cette étude servira de base a la
construction d’un algorithme de reconnaissance des formules Horn élar-
gies simples. On peut remarquer en outre que comme toute formule Horn
étendue simple est Horn élargie simple, ces propriétés sont aussi vraies
pour les formules Horn étendues simples.

Définition 20 (Agrégat) Soit R la cloture transitive et réflexive de la
relation {(x,y) € VxV/3C € F telle que x,y € pos(C') et card(C Neg(x)) =
card(CNeg(y))}. R est une relation d’équivalence sur les éléments de V|

et ses classes d’équivalences sont appelées les agrégats de F'.

Exemple: Soit Fy = {Cy,Cy, Cs,Cy, Cs, C, C7, Cs} avec

neg(cl) = {51?17 T, T3, T5, Ty L7, T8y L10, 51?13}7 pOS(Cl) = {51?117 51?12};

neg(CQ) = {51?17 T5, Te, L7, T8, T10, 51?13}7 pOS(Cz) = {51?4, 51?12};
neg(Cg) = {51?17 Ty, T5, Te, L7, T8, T9, T11, L12, 51?13}7 pOS(C:a) = {51?10}3
neg(Cy) = {1, 2, 3, T5, T, 7, Ts, T13}, pos(Cy) = {9, 212} 3
neg(Cs) = {xa, a3}, pos(Cs) = {xy, 5}

neg(Cs) = {x2, x3}, pos(Cs) = {x1, x5, 12, T13};

neg(C7) =0, p03(07) = {51?17 L7, T8, 51?10};

neg(Cs) = 0 pos(Cs) = {1, z6}.

Pour i =1,2,3,5,6,7,8,13, card(CNeg(x;)) =4;
card(C Neg(x10)) = 2,

67

Chapitre 3. Les formules Horn étendues et élargies simples

Pour i =4,9,11,12, card(CNeg(x;)) = 1;
Les agrégats de Fy sont: Ay = {xy, x5, x6, ¥7, T3, 13}, Az = {x10}, Az =

{z4, 29,211, 212} et Ay = {x9, 23}

Les trois propositions suivantes sont des conséquences directes des
définitions.

Proposition 42 Supposons que F soit Horn élargie simple. Soient T
une arborescence reconnaissant F' et x,y € V. Si @ est le parent de §

dans T, alors CNeg(y) C C' Neg(x).

Preuve: Soit P le chemin orienté de T" qui commence a la racine de
T et dont le dernier arc est 77. Supposons que C'Neg(y) # (. Soit
C € CNeg(y). Par définition, tous les arcs de P sont étiquetés par des
éléements de neg(C'), donc x € neg(C) et C € C'Neg(x). Si CNeg(y) =0,

le résultat est trivialement vérifié. O

Notation 1 On utilisera C Neg(A) pour décrire l'ensemble | ., C Neg(z).

Proposition 43 Soit A un agrégat et x,y € A. Si F' est Horn élargie
simple, alors CNeg(x) = C'Neg(y) = CNeg(A).

Preuve: Soit T' une arborescence reconnaissant F'. Supposons qu’il existe
C € F telle que x,y € pos(C'). Par définition il existe un chemin orienté
de T' qui contient @ et 7. On déduit de la Prop. 42 que C'Neg(x) C
CNeg(y) ou CNeg(y) € CNeg(x). Dot CNeg(x) = CNeg(y) car
card(CNeg(x)) = card(CNeg(y)). Finalement, le résultat est obtenu
par transitivité de 1’égalité. O

Proposition 44 Supposons que F' est Horn élargie simple. Soit T une
arborescence reconnaissant F' et A un agrégat.

1. Pour toute clause C' € F', T'yrpos(c) €5t un chemin orienté de T’ (qui
peut étre vide).

2. Ty est un sous-graphe connexe de T (T4 est une arborescence), et
T4 a un pied.

Preuve:

1. Soient z,y € AN pos(C). On peut supposer que T est un ancétre
de ¥ dans T puisque Tpos(cy est un chemin orienté. Soit Z un arc
appartenant au chemin orienté de 7' dont le premier arc est @ et
dont le dernier arc est 7. Il est suffisant de montrer que z € AN
pos(C'). On a z € pos(C') car T),5(cy est un chemin orienté. De plus
CNeg(y) € CNeg(z) € CNeg(x) (Prop. 42) et card(C Neg(z)) =
card(CNeg(y)), donc card(CNeg(z)) = card(C Neg(z)) et z € A.

68

3.4. Agrégats

2. Par définition d’un agrégat, il existe une permutation (C1,...,Cy)
des éléments de {C' € F/A N pos(C) # 0}, telle que pour tout i
(1 <i <k)ilexiste j (1 <j <) tel que pos(C;) N pos(C;) # (.
Pour tout ¢ (1 <4 < k) Thnpos(c,) est un chemin orienté (Prop. 44
(1)). Le résultat découle de ce que pour chaque U C V etW C V,
si Ty est une arborescence avec un pied, Ty est un chemin orienté,
et UNW # (), alors Ty,w est une arborescence avec un pied.

Supposons F' Horn élargie simple, soient A et A’ deux agrégats et C' €
F. On observe que si ANpos(C') # 0, A'Npos(C') # D et card(C Neg(A)) =
card(CNeg(A')), alors A = A'.

Définition 21 (lAgrégats) Soit C € F. On définit [Agregats(C') comme
la liste ordonnée des agrégats (Ayq, ..., A,) telle que A;Npos(C) £ (1 <

i <n), pos(C) C (A1U...UA,) et card(CNeg(A;)) > card(CNeg(A;))
(1<i<j<n)

Exemple: Pour la formule Fy, [Agregats(Cy) = (As), lAgregats(Cy) =
(As), lAgregats(Cs) = (Az), lAgregats(Cy) = (As), [Agregats(Cs) =
(Ay), lAgregats(Cs) = (A1, As), [Agregats(Cr) = (A1, Az), [Agregats(Cs) =
(Ar).

Lemme 45 Supposons que F' est Horn élargie stimple. Soit T une arbo-
rescence reconnaissant F'. Soit C € F, et A, A’ deux agrégats tels que A
est le prédécesseur de A dans [Agregats(C). Soit @ le premier arc du
chemin orienté T yinpos(cy. Alors le dernier arc de Tsqposc) €st le parent

de @ dans T, et @ = foot(Ty).

Preuve: Soit ¢ € AN pos(C). L’arc ¢ est un ancétre de @ puisque
Thos(cy est un chemin orienté et card(C'Neg(q)) = card(CNeg(A)) >
card(C Neg(A")) = card(CNeg(x)) (Prop. 42). Soit J le parent de @
dans T. On a deux possibilité, @ = 7 ou ¢ est un ancétre de 7. On
a p € pos(C) car T, ¢y est un chemin orienté, et p ¢ A’ car T est
le premier arc de T4iqpos(cy. La Prop. 42 nous donne card(C Neg(p)) >
card(C Neg(x)). Soit A” 'agrégat tel que p € A”. Ona card(CNeg(A")) >
card(C Neg(A')) et ensuite card(CNeg(A”)) > card(C Neg(A)) par défi-
nition de lAgregats(C'). On a card(C Neg(q)) > card(C Neg(p)) (Prop. 42),
et card(CNeg(A)) > card(CNeg(A”)). Donc card(C Neg(A)) = card(C Neg(A")),
A= A" et p € A. Pour tout ¢ € AN pos(C), si p # q alors ¢ est un
ancétre de P, d’ott P est le dernier arc de T'srpos(c)- Le parent de T
n’appartient pas a A’, donc @ = foot(Ty/). O

On montre maintenant que ’ensemble des agrégats d'une formule
Horn élargie simple a une structure de forét.

69

Chapitre 3. Les formules Horn étendues et élargies simples

Proposition 46 Soient A, A’ et A" des agrégats, et C'y, Cy deux clauses
de F tels que A" (resp. A”) est le prédécesseur de A dans | Agregats(Cy)
(resp. [Agregats(Cs)). Si F' est Horn élargie simple alors A" = A”.

Preuve: Soit T' une arborescence reconnaissant F. Il existe des variables
z1,y1 € pos(Cy) telles que x; € A’, yy € A, et T est le parent de i dans
T (Lemme 45). 1l existe deux autres variables w3, y2 € pos(Cy) telles que
xy € A" yy € A, et T} est le parent de y§ dans T (Lemme 45). Ty est un
sous graphe connexe de T' (Prop. 44), d’ott 21 = x5 et A’ = A". O

Notation 2 Soit A un agrégat. On appelle PRED(A) Uensemble {A’/ 3C € F
tel que A" est le prédécesseur de A dans [Agregats(C)}.

Remarque, si F' est Horn élargie simple, alors pour tout agrégat A,
card(PRED(A)) <1 (Prop. 46).

Exemple: PRED(A;) = 0, PRED(A;) = {A1}, PRED(A;) = {A},
PRED(A,) = 0. La forét associée est dessinée en Fig. 3.3.

Al
A2 A3

FiG. 3.3 — Forét associée aux agrégats de Fy

A4

Proposition 47 Supposons que F est Horn élargie simple. Si A et A’
sont deux agrégats tels que PRED(A") = {A}. Alors on a C'Neg(A') C
CNeg(A).

Preuve: Soit T' une arborescence reconnaissant F'. Soit C' € F une clause
telle que A, A" € [Agregats(C). 1l existe deux variables x,y € pos(C)
telles que © € A, y € A’, et T est le parent de 77 dans I'arborescence
T (Lemme 45). On a C'Neg(y) € CNeg(x) (Prop. 42), CNeg(A) =
CNeg(z)et CNeg(A') = CNeg(y) (Prop. 43), d’ot CNeg(A') C CNeg(A).
O

Soit F'={C4,...,Cp} et N =card(Cy) + ...+ card(Cy,).
Proposition 48 Les agrégats de F' peuvent étre calculés en temps O(N).

Preuve : Définissons dans un premier temps la procédure OrderPos (Fig. 3.4)
qui calcule pour toute clause C', une liste ordonnée des élément de pos(C'),
notée ordPos(C'), telle que pour tout couple de variables .,y € pos(C),
x est placé avant y dans ordPos(C') si card(C Neg(x)) > card(C Neg(y)).

70

3.5. Reconnaissance de formules Horn élargies simples

Chaque W] (1 < i < card(F')) représente ’ensemble {x € V/ card(C Neg(x)) =
i }. Les ensembles C'Neg(x) et C'Pos(z) (¢ € V), donnés en entrée a la
procédure OrderPos peuvent étre calculés a partir de F' en temps O(N).
Il est en outre facile de vérifier que la procédure Order Pos a une com-
plexité linéaire.

Soit G(F') le graphe dont I’ensemble des sommets est V' (on rappelle
que V est I'ensemble des variables de F') et dont I’ensemble des arcs
est £ = {{x,y}/card(CNeg(x)) = card(CNeg(y)), et il existe C' € F
tel que x et y apparaisse consécutivement dans ordPos(C')}. Par défi-
nition, les agrégats de F' sont des composantes connexes de G(F). On
peut observer que card(E) < card(pos(C1)) + ...+ card(pos(Cy,)) avec
F ={Cy,...,C,}. Donc les agrégats peuvent étre construits en temps
linéaire & 'aide d’un parcours du graphe (parcours en profondeur par
exemple). O

Procédure OrderPos
Entrée : Les ensembles C'Neg(z) et CPos(z) (z € V);
Sortie: Les listes ordPos(C)(C € F);
début
pour tout C € F faire
ordPos(C) «+ 0;
pour i = 1 jusqu’a card(F) faire
Wi« 0;
pour tout x € V faire
Wilcard(CNeg(x))] < Wlcard(CNeg(x))] U{x};
pour i = 1 jusqu’a card(F)
pour tout x € W[i] faire
pour tout C' € C'Pos(z) faire
insérer @ au début de ordPos(C);

fin

FiG. 3.4 — Procédure OrderPos

3.5 Reconnaissance de formules Horn élar-
gies simples

Dans cette section nous présentons un algorithme linéaire pour la
reconnaissance des formules Horn élargies simples. On va voir que pour
toute formule F' Horn élargie simple, on peut construire une arborescence
reconnaissant F', en utilisant la forét associée a ses agrégats que nous
avons mise en évidence a la section précédente.

71

Chapitre 3. Les formules Horn étendues et élargies simples

Proposition 49 Supposons que F' est Horn élargie simple. Soit T une
arborescence reconnaissant F' et A un agrégat.

1. Pour toute clause C' € F, si AN pos(C) £ 0 et si A n'est pas
le premier élément de [Agregats(C), alors foot(T4) est le premier
arc du chemin orienté Tsnpos(c)-

2. Pour tout agrégat A’ tel que PRED(A") = {A} et pour toute clause
C e F,siAcetA appartiennent a [Agregats(C), alors le parent
de foot(Tar) est le dernier arc de Tarpos(c) -

Preuve: Découle directement du Lemme 45. O

Proposition 50 Soit A un agrégat et T une arborescence étiquetée avec
les éléments de A. Si pour toute clause C' € F', Tanpos(cy st un chemin
orienté de T, alors T a un pied.

Preuve: La preuve est la méme que celle de la proposition 44(2).

Par définition d’un agrégat, il existe une permutation (Cy, ..., Cy) des
éléements de {C € F/ANpos(C) # D}, telle que pour tout ¢ (1 <7 < k) il
existe J (1 < j < 1) tel que pos(C;)Npos(C;) #£ . Pour tout 7 (1 <i < k)
T'srpos(cy) est un chemin orienté (Prop. 44 (1)). Le résultat découle de ce
que pour chaque U C V etW C V. si Ty est une arborescence avec un
pied, Ty est un chemin orienté, et U N W # (), alors Ty w est une arbo-
rescence avec un pied. O

Définition 22 (Arborescence acceptable) Soient A un agrégat et T
une arborescence étiquetée avec les éléments de A, tels que pour toute
clause C' € F, Tanpos(c) est un chemin orienté. L’arborescence T est
acceptable pour A si T satisfait les conditions suivantes

1. Pour toute clause C' € F, si AN pos(C) # 0 et A n'est pas le
premier élément de [Agregats(C) alors foot(T) est le premier are

de TAﬂpos(C) .

2. Pour tout agrégat A" tel que PRED(A") = {A}, i existe x4 €
A tel que pour toute clause C' € F, si A et A" appartiennent a
[Agregats(C), alors T4 est le dernier arc de T srpos(C) -

Lare T4 sera appelé anchor(A, T).

Exemple: La figure Fig. 3.5 représente une arborescence T acceptable
pour I'agrégat A; de la formule Fy. On a anchor(A,, T) = &%, et anchor(As, T) =
Z15. On peut vérifier que pour chaque clause C' € Fy, Ay N pos(C)
est un chemin orienté de T (parfois vide): Ay N pos(Cs) = {1, 25},

72

3.5. Reconnaissance de formules Horn élargies simples

x1 ! LXl' <----- foot(T)
x5 X6 X5 X6
x8 X8
R g N
anchor(A2,T) anchor(A3,T)

FiG. 3.5 = T : Une arborescence acceptable pour Ay

A1 Npos(Cs) = {x1, x5, 215}, A1 Npos(Cr) = {x1, 27,28}, A1 Npos(Cs) =

{z1, 26}

Proposition 51 Si F' est une formule Horn élargie simple, alors tout
agrégat de F' admet une arborescence acceptable.

Preuve: Si F' est Horn élargie simple par rapport & 7', alors T4 est une
arborescence acceptable pour A (Prop. 49). O

Nous montrons maintenant comment on peut construire une arbo-
rescence reconnaissant F' en utilisant les arborescences acceptables et la

relation PRED.

Définition 23 (R(t)) Pour tout agrégat A, soit t(A) un arborescence

acceptable pour A, et supposons card(PRED(A)) < 1. On définit Uarbo-
rescence R(1) comme ceci:

1. L’ensemble des sommets de R(t) est V U{r}, ot r est la racine de
R(t) etr g V.

2. L’ensemble des arcs de R(t) est 'union des ensembles suivants :

~{(r,x)/ il existe un agrégat A tel que v € A,PRED(A) = ()
et foot(t(A)) =T}

— {(z,y)/ i existe deux agrégats A et A’ tels que @ € Ay €
A PRED(A") = {A}, foot(t(A")) = ¥ et anchor(A’,1(A)) =
K

~{(x,y)/ il existe un agrégat A tel que x,y € A, et T est le
parent de i dans t(A)}.

3. Chaque arc (x,y) est éltiqueté pary.

73

Chapitre 3. Les formules Horn étendues et élargies simples

t(A4) t(AL)

A4 Al

{4,911,12}

A2 A3

F1G. 3.6 — Construction de R(t)

Exemple: La figure 3.6 représente la construction d’une arborescence

R(t) pour Fj.

Proposition 52 Supposons que tout agrégat A satisfasse les conditions
sutvantes :

1. Ve,y € A,CNeg(x) = CNeg(y) ;
2. card(PRED(A)) <1;
3. Il existe une arborescence t(A) pour A;

4. Pour tout agrégat A’ tel que PRED(A") = {A}, CNeg(A") C
CNeg(A).

Alors F' est Horn élargie simple par rapport a R(t).

Preuve: Soit 7' = R(t). Dans un premier temps on prouve que pour
toute clause €' € F, T,.4) est une arborescence dont la racine est
la racine de T'. Il est suffisant de prouver que pour tous z,y € V,
si @ est un ancétre de ¥ dans T, alors C'Neg(y) € CNeg(x). Par
construction de T' il existe une séquence d’agrégats Ay, ..., Ay telle que
r € A,y € Ar et PRED(A;) = {Ai_1} (pour 1 < i < k). La condi-
tion 4 nous donne C'Neg(Ar) € CNeg(A1), et la condition 1 implique
CNeg(Ar) = CNeg(y) et CNeg(A1) = CNeg(x). Donc CNeg(y) C
C'Neg(x). Maintenant on prouve que pour toute clause C' € F, Tp5c)

74

3.5. Reconnaissance de formules Horn élargies simples

est un chemin orienté de T. Soit [Agregats(C) = (Ai,...,Ar). Par
hypothése T'4,npos(cy est un chemin orienté de t(A;) (1 < ¢ < k) et
par construction de T, T,,4c) est la concaténation des chemins orien-
663 T'a,rpos(C)s - -+ » L Aprpos(c)- O

L’algorithme Horn Elargie Simple détermine si une formule F' est
Horn élargie simple. Si c’est le cas, I’algorithme retourne une arborescence

reconnaissant F', sinon I'algorithme retourne fauz. Sa correction vient des
propositions 43, 46, 47, 51 et 52.

Algorithme Horn Elargie Simple

Entrée: Une formule F.

Sortie: Un arborescence reconnaissant F' si F' est Horn élargie simple,
faux sinon.

1. Construire les agrégats de F'. Si un agrégat contient deux variables
z ety telles que C'Neg(x) # C Neg(y) alors retourner faux (Prop. 43).

2. S’il existe A tel que card(PRED(A)) > 1, alors retourner faux
(Prop. 46).

3. S’il existe un agrégat n’ayant pas d’arborescence acceptable, alors
retourner faux. (Prop. 51); sinon, construire une arborescence ¢(A)
pour tout agrégat A.

4. Pour tout agrégat A, s’il existe A’ tel que PRED(A’) = {A} et
CNeg(A") L CNeg(A), alors retourner faux (Prop. 47).

5. Construire R(t); retourner R(t) (Prop. 52).

Proposition 53 lalgorithme Horn Elargie Simple est de complexité li-
néaire.

Preuve :Rappelons que F' = {Cy,...,C}, et N = card(Cy) + ... +
card(Cp,). La Prop. 48 implique que l'on peut calculer en temps li-

néaire les agrégats de F. Pour tout agrégat A = {xy,...,zx}, il est
possible de tester en temps O(card(C Neg(x1)) + ...+ card(CNeg(xy)))
si CNeg(xy) = ... = CNeg(xy), en utilisant un tableau indexé par les

clauses. Donc, le premier pas de I"algorithme s’exécute en temps linéaire
car Y oy card(CNeg(x)) < N. Les ensembles PRED(A) peuvent étre
calculés en temps linéaire a partir des listes ordPos(C') (C € F) cal-
culées dans la preuve de la Prop. 48. Le second pas de ’algorithme est
donc aussi de complexité linéaire. Pour tout agrégat A, soit SUC(A) =
{A"/PRED(A") = {A}}. Soit A un agrégat, SUC(A) = {A1,..., A},
et @9 € A, 11 € Ay, ..., 2 € A On peut tester si C'Neg(xy) C
CNeg(xo), ..., CNeg(xr) € CNeg(xog) en temps O(card(CNeg(xg)) +
...teard(CNeg(xy))). La complexité du quatriéme pas de cet algorithme

75

Chapitre 3. Les formules Horn étendues et élargies simples

est donc O(N). Nous montrons a la section suivante que les arborescences
acceptables peuvent étre calculées en temps linéaires. Une fois ces arbo-
rescences calculées, il est facile de construire R(f) en temps linéaire. La
complexité totale de cet algorithme est donc O(N). O

3.6 Calcul des arborescences acceptables

Soit A un agrégat et {By,..., By} = {ANpos(C)/3C € F,AN
pos(C') # 0}. Nous devons construire, si possible, une arborescence T
dont les arcs sont étiquetés (de maniére unique) par les éléments de A et
tel que pour tout ¢ (1 < < k), T, est un chemin orienté. C’est exacte-
ment le probléme que Swaminathan et Wagner ont appelé probléeme de
réalisation arborescente [46].

Définition 24 (Réalisation arborescente) Soient § = {5,..., Sk}
une collection d’ensembles finis et T une arborescence dont les arcs sont
étiquetés (de maniére unique) par les éléments de S;U...US,. T est une
réalisation arborescente de & si Ts, est un chemin orienté de T (1 < i <

Exemple: Soit § = {{1,3,5}, {1,3,6}, {3,5}, {1,2}, {3,4}}. L’arbo-

rescence T' (Fig. 3.7) est une réalisation arborescente de §.

FiG. 3.7 — T est une réalisation arborescente de §

Soit § = {51,..., Sk} une collection d’ensembles finis. On appelle
G/(8) le graphe dont I'ensemble des sommets est S, et I'ensemble des
arétes est {{5;,5;}/S: NS; # 0,7 # j}. On remarque que si G(8) est
connexe alors tout réalisation arborescente de § a un pied.

Soit A un agrégat et A = {By,...,Br} = {ANpos(C)/IC € F,AN
pos(C') # 0}. Par définition d'un agrégat, G(A) est connexe. La condition
1 de la définition d’une arborescence acceptable T pour A (Déf. 22), exige
que des chemins orientés Tp, aient comme origine la racine de T'. La
condition 2 demande que certains chemins orientés aient le méme dernier
arc.

76

3.6. Calcul des arborescences acceptables

Lemme 54 Soit § = {S7,..., S5} une collection d’ensembles finis telle
que G(8) est connexe. Soit X = {b,e1,... ek, f1,..., fr} tel que XN(51U
L USY) =0, et T C{L,... k}. Il existe une réalisation arborescente T
de 8, telle que pour chaque « € I, Ts, commence a la racine de T', si
et seulement si il existe une réalisation arborescente de 8 U | J;c,{Si U

{b}, SZ U {b, 62'}, SZ U {b, fz}, SZ U {62'}, SZ U {fl}}

Preuve:

(=) Soit T une réalisation arborescente telle que pour tout ¢ € I, S;
commence a la racine de T. Soit T" ’arborescence obtenue a partir de
T en ajoutant les arcs suivant: T est le pied de T’, son extrémité est
la racine de T'. Les arcs € et f sont rajoutés, pour tout ¢+ € [comme
les enfants du dernier arc de Ts,. Il est trivial de vérifier que dans un tel
arbre les contraintes rajoutées dans le lemme ci-dessus sont vérifiées.
(<) Soit T" une réalisation arborescente des contraintes données ci-
dessus. Soit T la forét obtenue en retirant de 7" les arcs e f (pour tout
. - .

i €1)et b. Comme ((8) est connexe, T(lslusz)u...usk) est aussi connexe,
donc T est une arborescence. Soit 7 un élément quelconque de 1, Téj est
un chemin car on a la contrainte S;. Comme nous avons la contrainte

— . :
S;Ub, arc b forme un chemin avec 7§ . Comme on a les contraintes,

S;UA{e;} et S; U {e;, b}, on voit que Téju{ej » est un chemin dont T et
€7 sont les deux extrémités. Il en est de méme pour f;. On voit que la

seule solution est que l'arc T soit parent du premier arc de Téj et €

. — . . ,
ainsi que f; sont des enfants du dernier arc de Ts,. Comme T(Slusz)u...usk)

est connexe, on a obligatoirement que b est le parent de la racine de
T(/SlLJSQU...USk)’ ce qui implique que pour tout ¢+ € I, Ts, commence & la

racine de 7. O

On voit que si T" est une réalisation arborescente de § U | J;c;{5; U
{b},S; U{b,e;},S;U{b, fi}, 5 U {ei}, S; U {fL}}’ alors le graphe orienté T'
obtenu en retirant de 7" les arcs b, € et f; (i € I), est une réalisation
arborescente de & telle que pour tout ¢ € I, Ts, commence a la racine de
T. Le pied de T est I'arc (unique) de 7" dont le parent est 7.

Lemme 55 Soit § = {Sy,...,S5,} une collection d’ensembles finis telle
que G(8) est connexe. Soit X = {g,h} tel que X N(S1U...US,) =10, et
I CA{1,...,k}. 1l existe une réalisation arborescente T de § telle que les
chemins orientés Ts, (i € I) ont tous le méme dernier arc, si et seulement
s'il existe une réalisation arborescente de 8 U |J,c {5: U {g}, 5 U {h}}.

Preuve : Soit 7" une réalisation arborescente de § U | J;;{5: U {g}, Si U

{h}}. Le graphe orienté T obtenu en retirant de 1" les arcs ¢ et T est
une réalisation arborescente de § telle que tous les chemins orientés de
Ts, (i € I) partagent le méme dernier arc. On remarque en outre qu’au

77

Chapitre 3. Les formules Horn étendues et élargies simples

moins un des arcs ¢ ou 7 ason parent dans 7", et que s’ils ont tous les
deux un parent, alors c’est le méme pour les deux. Supposons que ¢ ait
un parent @ dans 7. Alors @ est le dernier arc du chemin orienté Tk,

(tel).O

On utilise les résultats des Lemmes 54 et 55 pour construire nos arbo-
rescences acceptables. On associe a chaque clause C' € F' deux nouveaux
symboles e. et f. (e. €V, f. € V), et a chaque agrégat A les symboles
nouveaux g4 et ha (ga € V, ha € V). La définition suivante utilise en
outre le symbole b (b & V).

Définition 25 (contraintes(A)) Soient A un agrégat et C € F une
clause tels que AN pos(C) # 0. On définit les ensembles D(C), E(C),
F(C) et §(C) comme ceci:

- D(C)={AnNpos(C)};

— Si A n’est pas le premier élément de [Agregats(C), alors
E(C) ={(ANpos(C))u{b}, (ANpos(C))U{b,ec}, (ANpos(C))U
{bv fC’}} (AﬂpOS(C))U{ec}, (AmpOS(C))U{fC}}, sinon 8(0) = Q}'

- Si A a un successeur A’ dans lAgregats(C'), alors
F(C) = {(ANpos(C))U{gar}, (ANpos(C))U{ha }}, sinon F(C) =
- §(C)=D(C)UEC)UTF(O).

Soit contraintes(A) = G(C1) U ... U G(Ck) ou {Cy,...,Ci} = {C €
FIAN pos(C) £ 0}.

On remarque que si C'Neg(A) = () alors F(C;) = 0 (1 <1 < k)
puisque, par définition de [Agretgats(C;), A n’a pas de successeur dans
[Agregats(C;).

Proposition 56 Soit A un agrégat. Il existe une arborescence accep-
table pour A si et seulement s’il existe une réalisation arborescente de
contraintes(A).

Preuve: Conséquence des Lemmes 54 et 55. O

Soit T' une réalisation arborescente de contraintes(A). Le graphe
ey — = N
orienté T obtenu en enlevant les arcs b, & et fo (C € F), gar et ha
(pour tout agrégat A’), de T" est une arborescence acceptable pour A. Le
pied de T est le seul arc de T” dont le parent est . Soit A’ un agrégat tel
que PRED(A’) = {A}. On peut supposer que g4 a un parent @ dans
T'. Alors anchor(A',T) = 7.

78

3.6. Calcul des arborescences acceptables

Procédure Construit Contraintes
Entrée: Les agrégats de F' et les listes ordPosAg(C) (C € F);
Sortie: Les ensembles contraintes(A);
début
pour tout agrégat A faire
contraintes(A) + 0;
pour toute clause C' € I telle que pos(C') #) faire
début
Soit (A1 N pos(C),..., Ay Npos(C)) = ordPosAg(C);
pour ¢ = 1 jusqu’a k faire
contraintes(A;) < contraintes(A;) U (A; Npos(C));
pour ¢ = 2 jusqu’a k faire
contraintes(A;) < contraintes(A;) U {(A; N pos(C))U{b}, (A; N pos(C))U{b,ec},
(A: 1 pos(C)) U g, feb, (A; 1 pos(C)) U fech (A 1 pos(C)) U {fe}}
pour ¢ = 1 jusqu’a k& — 1 faire
contraintes(A;) < contraintes(A;) U {(A; N pos(C)) U {ga,, },
(AZ N pOS(C)) U {hAi+1}})
fin
fin.

FiG. 3.8 — Procédure Construit Contraintes

Swaminathan et Wagner présentent [46] un algorithme qui détermine,
si pour un ensemble § = {S57,..., Sk}, il existe une réalisation arbores-
cente de § et, s’il en existe une la construit. Leur algorithme est de com-
plexité quasi-linéaire. Plus précisément sa complexité est O(n.a(n,r)),
otu n = card(Sy)+ ...+ card(Sk), r = card(Sy U...U Sg) et a(n,r) est
I'inverse fonctionnel de la fonction d’Ackermann. Swaminathan et Wag-
ner ont aussi remarqué que le probléme de réalisation arborescente peut
se résoudre en temps linéaire en utilisant les résultats de Dietz et al. [21].

On rappelle que F' = {Cy,...,Cp} et N = card(Cy)+...+card(Cy,).

Proposition 57 Les arborescences acceptables de I' peuvent se calculer
en temps O(N).

Preuve: Soit A un agrégat, contraintes(A) = {F1,...,E,} et Ny =
card(Ey) + ...+ card(Ey). Par définition de contraintes(A), > Na est
O(N). Soit C' € Fet (Ay,..., Ar) =lAgregats(C). On note ordPosAg(C')
la liste (A1 N pos(C), ..., AxNpos(C)). Les listes ordPosAg(C) (C € F)
peuvent étre obtenues en temps linéaire & partir des listes ordPos(C)
définies dans la preuve de la Prop. 48. Les listes ordPosAg(C) (C € F)
sont données en entrées de la procédure Construit-Contraintes (Fig. 3.8)
qui calcule les ensembles contraintes(A). Il est aisé de vérifier que la
complexité de la procédure Construit Contraintes est O(N). Une arbo-
rescence acceptable pour un agrégat A peut étre calculée en temps O(N4)

79

Chapitre 3. Les formules Horn étendues et élargies simples

en utilisant ’algorithme de Dietz et al. [21]. Le résultat découle de ce que

> N4 soit O(N). O

3.7 Reconnaissance des formules Horn éten-
dues simples

Nous présentons ici un algorithme linéaire pour la reconnaissance des
formules Horn étendues simples. Nous verrons que si toute variable appa-
rait négativement dans F, alors il n’est pas nécessaire de savoir résoudre le
probléme réalisation arborescente, pour décider si une formule est Horn
étendue simple. La classe des formules Horn étendues simples est une
sous-classe des formules Horn élargies simples, donc toutes les propriétés
décrites dans les sections précédentes sont toujours vraies. Soit une clause
C € F et T une arborescence telles que C soit Horn élargie simple par
rapport a 7'. Par définition T),.4c) est une arborescence dont la racine
est la racine de T', ce qui correspond & la définition d’une clause Horn
élargie simple par rapport a 7. La clause C' est Horn étendue simple, si
en plus T',cy(c) est une union disjointe par arcs de chemins orientés de T'.
Examinons les conséquences de cette exigence supplémentaire.

Proposition 58 Supposons que F' est Horn étendue simple. Soient T
une arborescence reconnaissant F et x,y,z € V (y # 2). Si T est le

parent de Y et Z, alors C Neg(y) N C'Neg(z) = 0.

Preuve : Supposons que C'Neg(y)NCNeg(z) # 0 et soit C € C'Neg(y)N
C'Neg(z). Par définition neg(C') = Ny U ... U Ni, avec N; N N; = ()
(1 <i<j<k), et Ty, est un chemin orienté qui commence a la racine
de T (1 < i < k). Nous avons y, z € neg(C). 1l existe ¢ (1 <1 < k) tel
que y € N;. Par hypothése 7 ne peut pas étre un arc de T,. Donc il
existe un j (1 # j) (1 < j < k) tel que z € N;. Par hypothése @ est le
parent de 7 et Z, d’oit @ est un arc de Th;, et T'n,, et donc x € N; N N;.
Contradiction. O

Proposition 59 Supposons que F' est Horn étendue simple. Soient T
une arborescence reconnaissant F, et A un agrégat. Si CNeg(A) # 0
alors Ty est un chemin orienté de T'.

Preuve : Supposons qu'il existe x,y,2 € A (y # z), tels que T est le pa-
rent de ¥ et Z dans T4. Nous avons C'Neg(y) = CNeg(z) = CNeg(A)
(Prop. 43), et C'Neg(y) N CNeg(z) = 0 (Prop. 58), d'ot C'Neg(A) = (.

Contradiction. O

80

3.7. Reconnaissance des formules Horn étendues simples

Proposition 60 Supposons que F est Horn étendue simple. Soit T une
arborescence reconnaissant F' et A un agrégat tel que C Neg(A) # 0. Pour
tout agrégat A’ tel que PRED(A") = {A} et CNeg(A') £ 0, le parent de
foot(Tar) est le dernier arc de Ty.

Preuve: Le lemme 45 implique que le parent de foot(T4/) est dans T4.
Soient 7 = foot(T4/) et T le parent de Z. Supposons que @ n’est pas
le dernier arc de T4. Soit y € A tel que 7 est le parent de 7. On a
CNeg(y) N CNeg(z) = 0 (Prop. 58), d’ou C'Neg(A) N CNeg(A") = (.
Mais C'Neg(A') # 0 et CNeg(A') C CNeg(A) (Prop. 47). Contradiction.
O

Nous définissons maintenant les arborescences viables qui jouent pour
les formules Horn étendues simples le méme réle que les arborescences
acceptables pour les formules Horn élargies simples.

Définition 26 (Arborescence viable) Soient A un agrégat, et T une
arborescence acceptable pour A. T est viable si T satisfait les conditions

suivantes lorsque C' Neg(A) £ 0 :
1. T est un chemin orienté.

2. Pour tout agrégat A’ tel que PRED(A’) = {A} et CNeg(A') £ 0,
anchor(A",T) est le dernier arc de T

Proposition 61 Si F' est Horn étendue simple, alors tout agrégat de F
admet une arborescence viable.

Preuve: Conséquence directe des propositions: Prop. 51, Prop. 59 et
Prop. 60. O

Proposition 62 Supposons que F' est Horn étendue simple. Soient A, A’
et A" trois agrégats (A" # A”) tels que PRED(A") = PRED(A”) = {A}.
Alors CNeg(A')N CNeg(A”) =1

Preuve: Supposons que C'Neg(A') # () et CNeg(A”) # (. Nous avons
CNeg(A) £ 0, car PRED(A’) = {A}. Soit @ le dernier arc du che-
min orienté Ty4. Soit ¥ = foot(T4s). La Prop. 60 implique que 7 est
le parent de 7/ et Z, donc C'Neg(y) N CNeg(z) = () (Prop. 58) et
CNeg(A)NCNeg(A")=0. O

Proposition 63 Supposons que tout agrégat A satisfait les conditions
sutvantes :

1. Yz,y € A,CNeg(z) = CNeg(y) ;

81

Chapitre 3. Les formules Horn étendues et élargies simples

2. card(PRED(A)) <1;
3. Il existe une arborescence viable t(A) pour A;

4. Pour tout agrégat A’ tel que PRED(A") = {A}, CNeg(A") C
CNeg(A).

5. Pour tous agrégats A" et A" tels que PRED(A') = PRED(A") =
{A}, CNeg(A")N CNeg(A") = 0.

Alors F' est Horn étendue simple par rapport a R(t).

Preuve: Soit T'= R(t). La Prop. 52 nous donne que F' est Horn élargie
simple par rapport a T'. Soient x,y, 2 € V (y # 2), tels que 7 est le parent
de 7 et Z dans T. 1l suffit de montrer que C'Neg(y) N CNeg(z) = 0.
Soient A, A" et A” trois agrégats tels que x € A, y € A’ et z € A”. Nous
avons deux cas & considérer :

1. A” = A”. L’arborescence t(A’) a un pied, donc @ € A" et A =
A"= A", Larborescence Ty = t(A) n’est pas un chemin orienté et
donc C'Neg(A) = 0, puisque par hypothese ¢(A) est viable. D’ou
CNeg(y) = CNeg(z) = CNeg(A) = 0.

2. A" # A”. Supposons que C'Neg(A') £ 0 et CNeg(A”) # 0. Les ar-
borescences t(A’) et t(A”) sont des chemins orientés. Si « € A’, alors
par construction de T PRED(A") = {A'} et @ = anchor(A" t(A"));
de plus @ est le dernier arc de t(A’) donc ¢(A’) est viable. Ce qui
contredit le fait que 7 est le parent de 7/, donc # € A’. De méme on
peut voir que & ¢ A”. Par conséquent PRED(A") = PRED(A") =
{A} par construction de T. Le résultat est une conséquence de la
condition 5.

L’algorithme Horn Etendue Simple détermine si un formule F' est
Horn étendue simple. S5i F' est Horn étendue simple, I’algorithme retourne
une arborescence reconnaissant £, sinon il retourne faux. La correction
de cet algorithme vient des propositions 43, 46, 47, 61, 62 et 63.

Algorithme Horn Etendue Simple

Entrée: Une formule F.

Sortie: Une arborescence T telle que F' est Horn étendue
simple par rapport a 17" si F' est Horn étendue simple.
faux sinon.

1. Construire les agrégats de F. Si un agrégat contient deux variables
et y telles que C' Neg(xz) # C' Neg(y) alors retourner faux (Prop. 43).

82

3.8. Un cas facile

2. S’il existe un agrégat A tel que card(PRED(A)) > 1, alors retour-
ner faux (Prop. 46).

3. S’il existe un agrégat n’ayant pas d’arborescence viable, alors re-
tourner fauz (Prop. 61); sinon construire une arborescence viable
t(A) pour tout agrégat A.

4. Pour tout agrégat A, s’il existe un agrégat A’ tel que PRED(A') =
{A} et CNeg(A") L CNeg(A), alors retourner fauz (Prop. 47).

5. Pour tout agrégat A, s’il existe A’ et A” tels que PRED(A’) =
PRED(A") ={A} et CNeg(A")N CNeg(A”) #), alors retourner
fauz (Prop. 62).

6. Construire R(t); retourner R(t) (Prop. 63).

Proposition 64 L algorithme Horn Etendue Simple a une complexité
linéaire.

Preuve: Nous avons prouvé dans la Prop. 53 que les étapes 1,2 et 4 se
font en temps O(N). Pour tout agrégat A, soit SUC(A) = {A'/PRED(A") =
{A}}. Soit A un agrégat, SUC(A) = {A,..., Apl, et a1 € Ay, ..., ap €
Ag. Nous pouvons tester si CNeg(A;) N CNeg(A;)) =0 (1 <i<j<k)
en temps O(card(CNeg(x1)) + ...+ card(CNeg(xzyr))), en utilisant un
tableau indexé par les clauses. Donc la complexité de la cinquiéme étape
est O(N). Nous prouvons dans la Sec. 3.9 que les arborescences viables
peuvent étre calculées en temps linéaire. Donc, la complexité totale de

I’algorithme est O(N). O

Dans la section suivante (Sec. 3.8) nous présentons un algorithme
simple pour calculer les arborescences viables lorsque toute variable a au
moins une occurrence négative dans F'. Dans celle d’apres (Sec. 3.9) nous
étudions le calcul des arborescences viables dans le cas général.

3.8 Un cas facile

Dans cette section nous supposons que toute variable apparait négati-
vement dans I, ¢’est a dire que pour tout @ € V, C' Neg(x) # (). Pour tout
agrégat A, C Neg(A) #), donc, par définition, les arborescences viables
sont des chemins orientés. Soient A un agrégat, T une arborescence viable
pour A (T est un chemin orienté), et m une permutation des éléments de
A associée a T (z est le iéme élément de 7 si @ est le iéme arc de T'). Soit
C € F tel que ANpos(C) £ 0 et soit B = AN pos(C). Par définition, les
éléments de B apparaissent consécutivement dans 7. De plus s’il existe

Ap (resp. A’) tel que PRED(A) = {Ao} (resp. PRED(A") = {A}) et

83

Chapitre 3. Les formules Horn étendues et élargies simples

AoNpos(C') £ 0 (resp. A'Npos(C') # 0) alors le premier (resp. dernier) élé-
ment de 7 appartient & B. On peut voir que par hypothese C'Neg(A') # ()
et donc la condition 2 de la Déf. 26 doit étre satisfaite. Trouver une ar-
borescence viable se réduit donc a trouver une permutation des éléments
de A qui satisfasse les contraintes énoncées a la section précédente.

Définition 27 (Permutation permise) Soit £ = {FEy,..., Ex} une
collection d’ensembles finis et U = E1 U . ..U Ey. Une permutation m des
éléments de U est permise respectivement a €, si pour tout v (1 < i < k)
les éléments de E; apparaissent consécutivement dans 7.

Exemple: Soit U = {A,B,C, D, E. F}et& ={{A,C, F},{B,C,D, '},
{B, E}}. Les permutations permises de U respectivement a € sont: (A, C, F, D, B, F),
(A,F,C,D,B,E), (E,B,D,F,C,A) et (E, B, D,C, F, A).

Remarque 2 Si (x1,...,2,) est une permutation permise de U respec-
tivement a €, alors (x,,...,x1) est aussi une permutation permise de U
respectivement a &.

Lemme 65 Soit £ = {Fy,..., E;} une collection d’ensembles finis, U =
EyU...UEy, X = {be} telle que X NU = O, I C {1,...,k} et
J CAl,...,k}. 1l existe une permutation permise © des éléments de
U respectivement a &, telle que pour tout 1 € I le premier élément de 7
appartient @ E;, et pour tout 7 € J le dernier élément de m appartient a
E;, si et seulement s’il existe une permutation permise des éléments de
U U b, e} respectivement a € U{U U{b},UU{e}} U (e {E:U{b}})U
(UjeJ{E] U{el}).

Preuve: = Soit m une permutation permise des éléments de U res-
pectivement & £, telle que pour tout ¢ € I, le premier élément de 7
appartient a F;, et pour tout j € J, le dernier élément de 7 appartient
a Fj, dans ce cas, la permutation 7’ = (b, m1,..., 7, €) (ol m; désigne le
™€ ¢lément de), vérifie bien les contraintes de &. Elle vérifie aussi la
contrainte U/ U{b} car e est a une extrémité de 7', il en est de méme pour
la contrainte U U {e}. Comme pour tout ¢ € I, my € E;, il est évident que
la contrainte F; U {b} est satisfaite, pour tout ¢ € I, dans 7’. Il en est de
méme pour les contraintes £; U {e}, pour j € J.

< Soit 7’ une permutation permise de U U {b, e} respectivement a £ U
UL, UU{e}} U (Ui B UL} U (U e {Ej U{e}}). La contrainte
U U b oblige e & étre a une des extrémités de 7/, la contrainte U U {e}
oblige b & étre a 'autre extrémité de n’. On peut donc supposer que b est
le premier élément de 7’ et que e en est le dernier (si ce n’est pas le cas,
on peut inverser I'ordre des éléments de 7’). Comme on a les contraintes
E; U {b} pour tout ¢ € I, on sait que dans 7', les E; (1 € I) contiennent
tous le second élément de 7’ (puisqu’ils sont consécutifs & b). De méme

84

3.9. Calcul des arborescences viables

les E; (5 € J) contiennent tous ’avant-dernier élément de 7. On obtient
donc facilement une permutation permise de U respectivement a £ en
retirant & 7’ les éléments b et e. O

Nous utilisons maintenant le Lemme 65 pour exprimer les conditions
qu’une arborescence viable doit vérifier. La définition suivante utilise les

symbolesbet e (b€ Vet ed V).

Définition 28 (contraintes1(A)) Soit A un agrégat. L ’ensemble contraintesl(A)
est définie comme ["union des ensembles suivants:

- {AU{b}, AU {e}}
- {Anpos(C)/C € F};

- {(ANpos(C))U{b}/C € F et A n’est pas le premier élément de
[Agregats(C)};

(
- {(ANpos(C))U{e}/C € F et A n’est pas le dernier élément de
[Agregats(C)}.

Proposition 66 Supposons que pour tout x € V., CNeg(x) # 0. Soit A
un agrégat. Il existe une arborescence viable pour A si et seulement s’il
existe une permutation permise de AU{b, e} respectivement a contraintes!(A).

Preuve: Le résultat découle du Lemme 65. O

Soit A un agrégat et m une permutation permise de AU{b, e} respecti-
vement a contraintesl(A). Supposons que 7 est de la forme (b, 1, ..., x, €).
On associe & m un chemin orienté de T étiqueté par les éléments de A
et tel que T¢ est le parent de 731 Tipt (1 <0 < k). T est une arbores-
cence viable pour A, et pour tout agrégat A’ tel que PRED(A’) = {A},
anchor(A',T) = zf.

Les ensembles contraintes1(A) sont calculés par la procédure Construit
Contraintes 1 (Fig. 3.9). Les listes ordPosAg(C') (C' € F') données en en-
trée & Construit Contraintes 1 sont définies dans la preuve de la Prop. 57.
Une permutation permise de AU{b, e} respectivement a contraintesl(A)
peut étre trouvée en temps linéaire en utilisant I'algorithme de Booth
et Lueker [5] ou algorithme de Habib et al. [28, 29]. On peut donc
construire les arborescences viables de F' en temps O(N) (la preuve est
la méme que celle de la Prop. 57).

3.9 Calcul des arborescences viables

On peut adapter la méthode présentée a la section 3.6 pour le calcul
des arborescences acceptables. Nous n’avons qu’a changer la définition

85

Chapitre 3. Les formules Horn étendues et élargies simples

Procédure Construit Contraintes 1
Entrée: Les agrégats de F' et les listes ordPosAg(C) (C € F);
Sortie: Les ensembles contraintesl(A);
début

pour tout agrégat A faire

contraintesl(A) « {AU{b}, AU {e}};
pour toute clause C' € I telle que pos(C') #) faire
début

Soit (A1 N pos(C),..., Ay Npos(C)) = ordPosAg(C);
pour ¢ = 1 jusqu’a k faire
contraintesl(A;) « contraintesl(A;) U (A; N pos(C));
pour ¢ = 2 jusqu’a k faire
contraintesl(A;) < contraintesl(A;) U {(A; N pos(C)) U {b}};
pour ¢ = 1 jusqu’a k& — 1 faire
contraintesl(A;) « contraintesl(A;) U {(A; N pos(C))U{e}};

fin
fin.

Fi1G. 3.9 — Procédure Construit Contraintes 1

des ensembles contraintes(A) pour tenir compte des conditions supplé-

mentaires induites par la définition 26. Nous devons séparer deux cas:
CNeg(A)=0et CNeg(A)#£ 0. Si CNeg(A) # D alors tout arborescence
viable pour A est un chemin orienté donc nous ajoutons a contraintes(A)
les ensembles A, AU {b}, AU {b,e}, AU{b, f},AU{e} et AU{f}. On
rappelle que {e,b} NV = (). La définition de contraintes2(A) utilise le
nouveau symbole f (f ¢ V).

Définition 29 (contraintes2(A)) Soient un agrégat A et une clause
C € F tels que AN pos(C) £ 0. On définit les ensembles D(C'), E(C),
F(C) et §(C):

86

- D(C)={ANpos(C)}.

— Si A n’est pas le premier élément de [Agregats(C), alors
E(C) ={(Anpos(C))U{b}, (ANpos(C))ULb, e}, (ANpos(C))U
(b, fe}, (Apos(C))Ufec}, (Anpos(C)ULfe1), sinon &(C) = 0.

~ St A est le dernier élément de lAgregats(C) alors F(C') =0, sinon
soit A’ le successeur de A dans lAgregats(C) ;
Si CNeg(A') = 0, alors F(C) = {(A N pos(C)) U{ga}, (AN
pos(C)) U {harl)
Si CNeg(A) £ 0, alors F(C) = {(ANpos(C))U{e}}.

- G(C)=D(C)UEC)UTF(C).

3.9. Calcul des arborescences viables

Soit {C1,...,Cx} ={C € F/ANpos(C) £ 0B} et B={A, AU{b}, AU
(b}, AU b [}, AU {c}, AU (/).

Si CNeg(A) £ 0, alors contraintes2(A) = BUG(C1) U ... USG(Cy);

Si CNeg(A) =0, alors contraintes2(A) = §(Cy) U ... UG(Cy).

Proposition 67 Soit A un agrégat. Il existe une arborescence viable pour
A si et seulement si il existe une réalisation arborescente de contraintes2(A).

Preuve: Se déduit des Lemme 54 et Lemme 55. O

Soit T" une réalisation arborescente de contraintes2(A). Le graphe
orienté T obtenu & partir de 7" en retirant les arcs b, €, 7, et et]Tg
(C € F), ga et H (pour tout agrégat A’), est une arborescence viable
pour A. Si C'Neg(A) # () alors T' est un chemin orienté, et le parent de
¢ dans 1" est le dernier arc de T. Donc, pour tout agrégat A’ tel que
PRED(A") = {A} et ONeg(A') £ 0, anchor(A',T) est le parent de €
dans T".

Proposition 68 Les arborescences viables de I' peuvent élre calculées
en temps O(N).

Preuve: Cette preuve est similaire a la preuve de la Prop. 57. O

87

Chapitre 3. Les formules Horn étendues et élargies simples

88

Chapitre 4

Conclusion

Dans cette partie, nous avons étudié la classe des formules Horn éten-
dues, ainsi que les classes proches telles que Horn étendues simples, Horn
élargies et Horn élargies simples. Nous avons quatre classes pour les-
quelles le test de satisfaisabilité se fait a 1’aide uniquement de la résolu-
tion unitaire, ce qui nous permet de proposer la génération a délai O(nNV)
pour toutes les formules de ces classes.

Nous avons étudié la structure d’agrégats, qui nous a permis de construire
des algorithmes de reconnaissance linéaires pour les formules Horn éten-
dues simples et Horn élargies simples.

Cette structure d’agrégats et 1’étude que nous avons faite peut aider
a mieux connaitre les formules Horn étendues. Des idées de ce types
pourront sans doute étre utilisées pour trouver un algorithme polynomial
de reconnaissance des formules Horn étendues.

Etudier la classe Horn étendue, ainsi que les classes apparentées, nous
a donné l'idée de généraliser les notions d’arbre et de chemins qui sont a
la base des définitions de ces classes. Cela nous a permis de mettre a jour
la classe des formules ordonnées, que nous présentons dans la partie I11.

89

Chapitre /. Conelusion

90

Troisiéme partie

Formules ordonnées et presque
ordonnées

91

Chapitre 1

Formules ordonnées

Sommaire
1.1 Présentation 93
1.2 Deéfinitions 00 o L. 94
1.3 Satisfaisabilité et génération a délai po-
lynémial 95
1.4 Algorithme de reconnaissance 96
1.5 Formules ordonnées-renommables 97

1.1 Présentation

Nous présentons la classe des formules ordonnées. Il s’agit d’une ex-
tension de la classe des formules de Horn étendant les formules Horn
élargies simples pour laquelle la résolution unitaire suffit, de la méme
fagon que pour les formules de Horn, & déterminer la satisfaisabilité. On
peut générer les solutions de telles formules avec un délai O(nN) (ot N
est la longueur totale de la formule et n son nombre de variables). Nous
présentons un algorithme de complexité O(nN) permettant de tester si
une formule appartient ou non a cette classe. Renommer (i.e. inverser le
signe de toutes les occurrences) certaines variables ne change pas la sa-
tisfaisabilité d’une formule. Nous allons ici étudier la classe des formules
ordonnées-renommables, c’est & dire telles qu’en renommant certaines
variables on obtient une formule ordonnée. Les résultats obtenus sur les
formules ordonnées s’appliquent aux formules ordonnées-renommables,
donc on peut résoudre le probléeme de satisfaisabilité en temps O(N) et
générer toutes les solutions avec un délai O(nN'). Nous présentons dans
ce chapitre un algorithme de complexité O(nN) pour la reconnaissance
des formules ordonnées-renommables.

93

Chapitre 1. Formules ordonnées

1.2 Définitions

La définition des formules ordonnées étend naturellement celle des
formules de Horn. On rappelle qu'une formule de Horn est une formule
dont chaque clause contient au plus un littéral positif. Une formule F sera
appelée ordonnée si chacune de ses clauses contient au plus un littéral
positif libre. La définition suivante introduit la notion de littéral libre.

Définition 30 (littéral libre/lié) Soit C € F et | € C. On dit que |

est lié dans C' (par rapport a F), si on a Occ(l) =0 ou s’ existe t € C

(t # 1) tel que Oce(l) C Occe(t). Sil n’est pas lié dans C, alors on dit
que [est libre dans C'.

Exemple: Soit F; = {C1,Cs, C3,C4} avec Oy = {aq, 29, 23,24}, Cp =
{_‘1’1, T, _'1’3}, 03 == {_‘1’1, X9, T4, $5}, 04 == {_‘1’1, X3, Ty, _'1'5}. L9 est
lié dans € par rapport a JFi, puisque Oce(—xy) C Oce(—xy), mais le
littéral x; est libre dans Cy par rapport & JFi, puisque pour tout littéral
[appartenant a Cy, Occr, (—x1) € Ocer, (1).

La proposition suivante généralise le fait que si toute clause de F
contient un littéral négatif, alors F est satisfaisable. On rappelle que pour
toute clause C' sur V, on appelle neg(C') 'ensemble {z € V' | ~z € C'}.

Proposition 69 5i toute clause C' € F contient un littéral négatif ou
un littéral lié dans C, alors F est satisfaisable.

Preuve: Soit V = {x1,...,2,}, on définit un ordre partiel sur V par:
x; < ajssi Oce(—a;) € Oce(—a;) ou (Oce(—x;) = Oce(—x;) et i < j). Soit
W ={y eV |ilexiste C € F tel que neg(C) =0,y € C, yest li¢ dans C
et y est minimal dans C pour l'ordre <} et M = W U{~y |y € V\W}.
Prouvons que M est un modele de F. Soit €' € F. Si neg(C) = 0,
alors par hypothése, C' contient un littéral lié dans (' et par définition,
CNW #, donc C N M # (). Supposons que neg(C') # () et soit y un
élément maximal de neg(C'). Nous allons montrer que y ¢ W. Supposons
que y € W et soit C" € F une clause telle que y € C7, neg(C’) = 0, y est
lié et minimal dans C’. On a Occ(—y) # 0. Donc il existe z € O’ (2 # y)
tel que Oce(—y) C Oce(—z) et y < z. Nous avons =z € C et donc y n’est
pas maximal dans neg(C'), contradiction. Finalement, y & W, -y € M
et CNM#(. O

Exemple: Toute clause (' de la formule F; définie ci-dessus contient un

littéral négatif ou un littéral positif lié. On a x5 < 24 < 79, 23 < 24,
W = {xqg, 23} et M = {—xy, 29, 23, "2y, x5},

94

1.3. Satisfaisabilité et génération a délai polynéomial

Nous introduisons maintenant la notion de formule ordonnée. Cette
définition généralise celle des formules de Horn. On rappelle qu'une for-
mule est dite de Horn, si chacune de ses clauses contient au plus un
littéral positif.

Définition 31 (formule ordonnée) Une formule F est ordonnée si
chaque clause C' € F contient au plus un littéral positif libre dans C'.

Exemple: F; est ordonnée car 1 est le seul littéral positif libre dans
(Oce(—ay) C Oce(~a1), Oce(—as) C Oce(—ay) et Oce(—x4) C Oce(—ay))
et x5 est le seul littéral positif libre dans Cy (Oce(—a4) € Oce(xs)).

Remarque 3 Toute formule de Horn est ordonnée.

Remarque 4 Si les clauses de F ne contiennent que des littéraux posi-
tifs, alors F est ordonnée.

Remarque 5 Toute formule Horn élargie simple est ordonnée et par
conséquent toute formule Horn étendue simple est aussi ordonnée.

1.3 Satisfaisabilité et génération & délai po-
lynémial

On sait que si F est une formule de Horn et qu’elle ne contient pas
de clause unitaire positive, alors F est satisfaisable. Cette propriété reste
vraie si F est ordonnée.

Une clause unitaire C' est dite positive si C' = {x} avec & € V. On sait
que si F est une formule de Horn, et ne contient pas de clause unitaire
positive, alors F est satisfaisable. Cette propriété reste vraie si F est
ordonnée.

Proposition 70 Si F est ordonnée et ne contient pas de clause unitaire
positive C' = {x}, telle que x est libre dans C, alors F est satisfaisable.

Preuve: Conséquence immédiate de la Prop. 69. O

Il est facile de voir que si F est une formule de Horn, alors pour
tout ensemble fini ¢ de clauses unitaires, Noyau(F UU) est une formule
de Horn. Nous montrons ici que cette propriété est conservée pour les

formules ordonnées.

Proposition 71 Soit U un ensemble fini de clauses unitaires sur V', si
F est ordonnée, alors Noyau(F UU) est ordonnée.

95

Chapitre 1. Formules ordonnées

Preuve: Soit 7/ = Noyau(FUU) et C' € F'. 1l existe C' € F tel que
CNUnit(FUU) =0, et C'"=C\ Unit(FUU). Soit [€ C’. Supposons
que [est lié dans C' par rapport a F. On prouve que [est lié dans C’ par
rapport a F'. Supposons que Ocer (1) # 0. Alors Ocer (1) # 0 et il existe
t € C (t#1) tel que Ocer(l) C Ocer(t). On a C N Unit(FUU) = 0,
donc t & Unit(FUU) et t & Unit(FUU). De plus, t & Unit(FUU),
car sinon 1 € Unit(FUU), Ocer (1) = 0 et Ocer (1) = §. Dot t € O,
Oceri(1) C Oceri(1), et | est 1ié dans C’ par rapport a F'. Par hypothése,
C' contient au plus un littéral positif libre dans €', donc C’ contient au

plus un littéral positif libre dans C’. O

Exemple: Soit U = {{—x4}, {5} }, étudions la formule FLUU. Noyau(FU

U) ={{x1, x2, 23}, {21, 22, "3}, {721, 23} }. On peut vérifier que Noyau(FU
U) est une formule ordonnée: x; est le seul littéral positif libre dans la
premiére clause et les deux autres clauses vérifient trivialement la défi-
nition car elles ne contiennent qu’un seul littéral positif. Puisque cette
formule est ordonnée et ne contient pas de clause unitaire, elle est sa-
tisfaisable. Donc, F; UU est satisfaisable ssi Unit(Fy UU) est cohérent.
Unit(Fi UU) = {—a4, x5}, est un ensemble cohérent,donc F; U U est
satisfaisable.

Proposition 72 On peut tester en temps O(N) si une formule ordonnée
est satisfaisable.

Preuve: Conséquence des Prop. 70 et 71. O

Les propositions Prop. 70 et Prop. 71 impliquent que les formules
ordonnées vérifient les propriétés P1 et P2. Leurs modéles peuvent donc
étre générés avec un délai polynomial (Partie I Chap. 2 Prop. 3 et Co-
rollaire 4).

1.4 Algorithme de reconnaissance

Nous allons montrer qu’il est possible de tester si un formule est
ordonnée avec un algorithme polynémial. Ce résultat n’est pas trivial,
puisqu’il existe des classes de formules pour lesquelles on connait un
algorithme polynémial qui résout SAT et que ’on ne sait pas reconnaitre,
c’est le cas par exemple des formules Horn étendues (Partie II de cette
these)

Proposition 73 On peut décider en temps O(nN) si une formule F est
ordonnée.

96

1.5. Formules ordonnées-renommables

Preuve: Soit Lit(V) = {ly,...,l2,}. On construit un tableau a deux
dimensions M[i,j] (1,5 € {1,...,2n}) tel que M[i,5] = 1 si Occ(l;) C
Oce(l;) et MJi,j] = 0 sinon. Cette construction peut étre réalisée par
la procédure Inclusion (Fig. 1.1). On va montrer que sa complexité est
O(nN). Les étapes 1 et 2 peuvent étre exécutées en un temps O(| Oce(l;) |
+ | Oce(l;) |) en utilisant un tableau auxiliaire de booléens qui est indexé
sur ’ensemble {1,...,2n}. Le cott de la procédure Inclusion est propor-
tionnel a S = X223, (] Oce(l;) | 4 | Oce(l;)). On a S = Sy + 53 avec
Sy =X (] Oce(ly) + ...+ | Oce(ly) |) et Sy = X2 (i. | Oce(l;) |). Main-
tenant, Sy < 2nN et Sy < X2 (4. | Oce(ly) |) = L2232, | Oce(ly) |<
Y2 N = 2nN. On en déduit que la complexité de Inclusion est O(nN).
Les ensembles Oce(l;) (1 <@ < 2n) donnés en entrée & la procédure In-
clusion peuvent étre calculés en temps O(N). La complexité totale de la
construction de M est donc O(nN). Maintenant, soit C' € F et | € C.
Une fois les ensembles Oce(l;) (1 < ¢ < 2n) calculés, on peut tester que
Occ(l) # O en un temps constant pour tout littéral [. En utilisant M, on
peut déterminer si [est libre dans C' en temps O(| C'|). D’ot on déduit
que ’on peut déterminer si une clause C' € F contient au plus un littéral
positif libre en temps O(n | C' |). Finalement, on peut décider en temps
O(nN) si F est ordonnée. O

Procédure Inclusion
Entrée: Les ensembles Occe(l;) (1 <1 < 2n);
Sortie: Un tableau & deux dimensions M[i, 7] (7,7 € {1,...,2n}) tel que
Mli,j] =1 si Oce(l;) € Occe(ly) et M[i,j] = 0 sinon.
début
pour ¢ = 2 jusqu’a 2n faire
pour j = 1 jusqu’a ¢ faire

début
(1) si Occ(l;) € Oce(l;) alors M|, j] < 1 sinon M[i, j] + 0;
(2) si Occ(lj) C Oce(l;) alors M([j,i] « 1 sinon M[j,1] « 0;
fin:

Y

fin

FiGc. 1.1 — Procédure Inclusion

1.5 Formules ordonnées-renommables

Soit x une variable apparaissant dans F. On rappelle que renommer
une variable consiste a remplacer toutes les occurrences de = par —x et
toutes les occurrences de —a par x. Nous allons présenter un ensemble
de résultats portant sur la possibilité de renommer certaines variables

97

Chapitre 1. Formules ordonnées

d’une formule quelconque pour la transformer en une formule ordonnée.
Nous proposons un algorithme polynémial O(n/N) (ot n est le nombre
de variables et N la longueur totale de la formule) permettant de tester
si une formule est ordonnée-renommable et de donner ’ensemble des
variables qu’il faut renommer pour obtenir une formule ordonnée. On
prouve que le renommage conserve les propriétés P1 et P2. Donc, si F
est obtenue en renommant certaines variables d’une formule ordonnée,
alors on peut générer les modéles de F avec un délai polynémial.

Définition 32 (formule ordonnée-renommable) F est ordonnée-renommable
si on peut la transformer en une formule ordonnée en renommant cer-
taines de ses variables.

Exemple: Soit Fy, = {C],C5,C3,CL}, avec C] = {—ay, w2, nas, 24},
Cé = {1’1,1}2,1‘3}, CZ/% = {1?1,_'1}2,—|$4,$5}, Czll = {1’1,_'1’371}4,_'1?5}. Fa
est une formule ordonnée-renommable, puisque F; est obtenue en renom-
mant les variables z; et z3 dans la formule Fj.

On vérifie dans un premier temps que la classe des formules ordonnées-
renommables vérifie la propriété P1.

Proposition 74 Si F est ordonnée-renommable, alors pour tout en-
semble de littérauz U, la formule Noyau(F UU) est ordonnée-renommable.

Preuve: On rappelle qu'un renommage est un ensemble de littéraux qui
est cohérent et complet (cf. définitions Partie I, Sec. 1.2).

Comme F est ordonnée-renommable, il existe un renommage R tel
que R(F) est ordonnée. Soit U = R(U), on a donc Noyau(R(F) U
U') = Noyau(R(F UU)) est ordonnée (Prop. 71). D’ott Noyau(F UU)

est ordonnée-renommable. O

Nous vérifions maintenant que la classe des formules ordonnées-renommables
vérifie aussi P2.

Proposition 75 Si F est ordonnée-renommable et toute clause C € F
est de longueur supérieure ou égale a deux, alors F est satisfaisable.

Preuve : Evident car le renommage des variables ne change pas la satis-
faisabilité d’une formule. O

Comme la classe des formules ordonnées-renommables vérifie les pro-
priétés P1 et P2, les résultats établis dans la Partie I impliquent que ’on
peut résoudre efficacement le probléme SAT pour de telles formules, et
aussi générer efficacement tous leurs modéles.

Corollaire 76 Si F est ordonnées-renommable, alors le probléeme de sa-
tisfaisabilité de la formule F peut étre résolu en temps O(N) et les mo-
deles de F peuvent étre générés avec un délai O(nN).

98

1.5. Formules ordonnées-renommables

On montre maintenant que I’on peut reconnaitre les formules ordonnées-
renommables en temps polynémial de la méme maniére que 'on peut
reconnaitre les formules Horn-renommables. Notre algorithme est basé
sur les propriétés du graphe orienté qui représente les contraintes que F
doit satisfaire pour étre ordonnée-renommable. Ce graphe est similaire
au graphe d’implication introduit par Aspvall et al. [2] (Partie I, Chap. 2)
pour déterminer en temps linéaire si une formule binaire est satisfaisable.

On rappelle que 'on peut représenter tout renommage comme un
ensemble de littéraux R, cohérent et complet pour V. en respectant la
convention suivante: la variable x est renommée ssi —x € R; on écrit
R(x) = @ et R(—x) = -z si @ € R (x n’est pas renommée), et on écrit
R(x) = -z et R(—x) = si mx € R (x est renommée). On remarque que
pour [€ Lit(V), R(l) est positif ssi [€ R.

Supposons que R est un ensemble de littéraux qui représente un re-
nommage qui transforme F en une formule ordonnée. Soient C' € F et
[,t € C. Supposons que [et t sont libres dans (. Alors R ne peut pas
contenir & la fois [et ¢ ; plus précisément, si [€ R, alors ¢ € R. Ceci nous

emmeéne & définir la relation :f> sur I’ensemble Lit(V).

Définition 33 (é) Pour tous It € Lit(V), =L 1 ssi il existe C € F
telle que l € C, 1€ C, 1 #1 etl et sont tous les deux libres dans C.

On notera G(JF) le graphe associé & la relation =,
Exemple: Construisons le graphe G/(F3) correspondant a la formule Fs.
Dans la premiére clause, un seul littéral est libre: =y ; on n’ajoute donc
pas d’arc dans le graphe. Dans la seconde clause, les littéraux x5 et x3
sont libres; on ajoute donc les arcs @y — -5 et x5 — —xy dans G(Fy).
Dans la troisieme clause, les littéraux —x, et -4 sont libres; on ajoute
—xry — x4 et xy — 29 dans G(F). Dans la derniere clause, x1 et -3
sont libres, G(Fy) recoit donc deux arcs supplémentaires x; — w3 et
—x3 — —xy. On peut voir le graphe G(F;) en Fig. 1.2.

€1 T3 Xy ‘51?4 ‘51?5
¢o————»@——— O — >

Ty T2 —r3 Xy X5
o ———>—>0— >0 ®

F1G. 1.2 = Graphe G(F3)

On appelle L5 1a cloture transitive et réflexive de :f>, et pour tout

littéral [, Closz(l) représente ’ensemble {¢ | [= t} (on écrira parfois

99

Chapitre 1. Formules ordonnées

plus simplement Clos(l) lorsqu’aucune confusion ne sera possible). Un

ensemble de littéraux L est dit F-clossi (I € L et (N t) implique que
t € L. On remarque que L est F-clos ssi Clos(l) C L pour tout [€ L.

On peut observer que [Lot ssi 1 S [, etl Loissil = (dualité).

Proposition 77 F est ordonnée-renommable ssi il existe R C Lit(V)
tel que R est cohérent, F-clos et complet pour V.

Preuve: (=) Soit X C V tel que le renommage des variables de X trans-
forme F en une formule ordonnée F’. Soit R={-p|peVNX}U{p|
p € V'\ X}. Par définition R est cohérent et complet. On montre main-
tenant que R est F-clos. Soient [et ¢ deux littéraux tels que [€ R et

[=% t. Nous devons prouver que t € R. Il existe une clause ' € F telle
que [,t € C, 1 # t et les deux littéraux [et ¢ sont libres dans C par
rapport a F. Soit C’' € F’ la clause obtenue en renommant les variables
de X dans C. C" contient R(l) et R(t). R(l) est positif puisque [€ R,
R(t) est négatif car F’ est ordonnée et C’ contient au plus un littéral
positif libre. Par conséquent { € R et t € R.

(<) Soit R C Lit(V) un ensemble cohérent, F-clos et complet pour V.
Et soit F' la formule obtenue en renommant les variables a telles que
-2 € R dans la formule F. On montre maintenant que F’ est ordonnée.
Soit ' € F' et C la clause correspondante de F. Supposons que ('
contienne un littéral positif libre dans C” par rapport a F’, appelons le
I'. Soit [€ C tel que R(I) =1'. On al € R puisque R(l) est positif. Soit
t e C" (t' #1') un littéral libre dans C’ par rapport & F', et t € C tel
que R(t) =t'. On at # [et ! ettsont libres dans C' par rapport a F.

Donc | == et e R puisque R est F-clos. Finalement, t ¢ R et R(t)
est négatif. Ceci prouve que F' est ordonnée. O

Exemple: Pour la formule F3, le graphe G(Fz) de la relation L2 est
donné en Fig. 1.2. On peut voir que I'ensemble complet et cohérent de
littéraux {—wzq, xy, a3, 24, x5} est Fy-clos. 1l correspond au renommage
des variables 1 et x3; il transforme F; en F; qui est une formule ordon-
née.

Le Lemme 78 sera utilisé dans les preuves des Prop. 79 et 83.

Lemme 78 Si L est un ensemble de littéraux F-clos et | est un littéral

tel que [¢ L alors Clos(I)N'L = ().

Preuve: Soit t € Clos(l). On a (L. et donc T == [par dualité. Si
t€ Lalorst e L,etle L puisque L est F-clos. Contradiction. O

100

1.5. Formules ordonnées-renommables

La Prop. 79 est une caractérisation utile des formules ordonnées-
renommables, elle va servir & écrire un algorithme de reconnaissance de
ces formules.

Proposition 79 F est ordonnée-renommable ssi pour tout x € V, Clos(x)
est cohérent ou Clos(—x) est cohérent.

Preuve: (=) Soit R C Lit(V) un ensemble cohérent, F-clos et complet
pour V (Prop. 77). Soit @ € V. Si « € R, alors Clos(x) C R (R est
F-clos) et Clos(x) est cohérent (R est cohérent). Sinon, ~z € R, (R est
complet) et Clos(—x) est cohérent.

(<) Soit V = {xy,..., 2, }. On définit les ensembles de littéraux Ly, ..., L,
de la fagon suivante. Si Clos(x1) est cohérent, alors Ly = Clos(x), dans
le cas contraire, Ly = Clos(—x1). Pour tout ¢ € {2,...,n}, si a; € Ly
ou ~x; € L;_y, alors L; = L;_q, sinon L; = L;_y U Clos(x;) si Clos(x;)
est cohérent, et L; = L;,_; UClos(—x;) si Clos(x;) est incohérent. Par dé-
finition L; (1 <1 < n) est F-clos. Prouvons maintenant par récurrence
que L; (1 < i < n) est cohérent. Par définition L; est cohérent. Soit
1€{2,....n}. Sia; € Li_y,ou —a; € Ly, alors L; = L;_1, et L; est co-
hérent par hypothése de récurrence. Supposons que x; & L;_y, —a; € L;_y
et L; = L1 UClos(x;) (la preuve est similaire si L; = L;_y UClos(—x;)).
Par hypothese, Clos(x;) est cohérent et L;_; est cohérent par hypothése
de récurrence. Le Lemme 78 implique que ; est cohérent. Finalement L,
est complet pour V', cohérent et F-clos, donc F est ordonnée-renommable

(Prop. 77). O

En utilisant la caractérisation mise en évidence ci-dessus, il est main-
tenant facile de reconnaitre si une formule est ordonnée-renommable.

Proposition 80 On peut tester en temps O(nN) si une formule F est
ordonnée-renommable.

Preuve : Pour tout littéral [, C'los(() est incohérent ssi [€ Clos(l). Donc
pour tout # € V, les deux ensembles Clos(z) et Clos(—x) sont incohé-
rents ssi x et - sont dans la méme composante fortement connexe de
G/(F). La Prop. 79 implique que F est ordonnée ssi pour tout @ € V', x et
-z ne sont pas dans la méme composante fortement connexe de G(F).
On peut remarquer que G(F) contient O(nN) arcs. Les composantes
fortement connexes de G(F) peuvent étre calculées en temps O(nN) en
utilisant 1’algorithme de Tarjan [47]. On peut tester si une composante
fortement connexe de G(F) contient des littéraux complémentaires en
temps O(n) en utilisant un tableau de booléens indexé par les éléments
de V. Il reste a prouver que G(F) peut étre construit en temps O(niV).
On utilise la procédure Construit-G(F) (Fig. 1.3). Le pas 2 peut étre
réalisé en temps O(nN) par la procédure Inclusion (Fig. 1.1 et preuve de

101

Chapitre 1. Formules ordonnées

Prop. 73). Les pas 3 et 4 prennent un temps O(X(] C; |*) (pour le pas 3,
voir la preuve de la Prop. 73) et O(X(] C; |*) < O(nN). Ceci implique le
résultat désiré. O

Procédure Construit-G(F)

début

1. A+ 0; {A représente 'ensemble des arcs de G(F).}

2. Construire un tableau & deux dimensions M|i, j] tel que

Mli,j] =1 si Oce(l;) € Occe(ly) et M[i,j] = 0 sinon.

3. Pour tout €' € F calculer, a ’aide de M, I’ensemble Libre(C')

des littéraux libres dans C'.

4. Pour tout C' € F et tout {I,1} C Libre(C), A < AU{(l,1),(t,D)};
fin

F1G. 1.3 = Procédure Construit-G/(JF)

Les classes ordonnées et ordonnées-renommables sont donc deux nou-
velles classes étendant Horn, dont la reconnaissance est polynémiale et
pour lesquelles il existe un algorithme de génération a délai polynémial.

102

Chapitre 2

Formules presque ordonnées

Sommaire
2.1 Présentationo 103
2.2 Geénération a délai polynéomial 107

2.3 Reconnaissance des formules presque or-
données 000, 112

2.1 Présentation

Dans ce chapitre, nous étendons la classe des formules ordonnées de
telle fagon que les modéles des nouvelles formules puissent toujours étre
générés avec un délai polynémial. Nous adaptons les résultats obtenus
sur la notion de base de Horn présentée par Hébrard et Luquet [32] et
sur les formules presque Horn (Partie I Chap. 3) aux formules ordonnées.
Nous présentons la classe des formules presque ordonnées, qui malheu-
reusement, tout comme la classe des formules presque Horn, ne vérifie
pas la propriété P1. On rappelle que la classe C vérifie P1 quand pour
tout ensemble de clauses unitaires U, si F € C alors Noyau(FUU) € C.

De la méme maniére que pour les formules presque Horn, nous pré-
sentons un ordre sur les variables qui permet d’étre str que pour tout
ensemble de clauses unitaires ¢ utilisé dans 1’algorithme de génération
des solutions (Partie I Fig. 1.1) on a Noyau(F UU) est presque ordonnée
si F est presque ordonnée. On peut donc générer avec un délai O(nN)
tous les modeéles de telles formules

Nous donnons de plus un algorithme de complexité O(r*N) pour la
reconnaissance des formules presque ordonnées.

Soit X C Vet C € F. On rappelle qu'une clause C est dite clause
sur X si O C Lit(X).

Définition 34 (formule X-ordonnée, formule X-ordonnée-renommable)
Soit X C V. F est X-ordonnée si pour toute clause C € F et tout littéral

103

Chapitre 2. Formules presque ordonnées

positif ¢ € X, on a: st x est libre dans C, alors C C Lit(X) et x est le
seul littéral positif libre dans C'.

F est X-ordonnée-renommable si on peut transformer F en une for-
mule X -ordonnée en renommant certaines de ses variables.

Exemple: Soit Gy la formule {{z1, 23}, {23, ~24, x5}, {3, 724, 25},
{_‘1}1, T2, T3, T, 1}7}, {_'1'3, Lqy L5, T, _'1’7}, {_‘1}1, T3, s, e, 1’7},
{—x1, 29, 26, ~xr}, {x6, 27}, {26, mxr}}. Gy est {3, 24, x5}-ordonnée,
on peut vérifier que les clauses contenant un littéral positif libre sur
{x3, 24,25} sont {x3, "2y, x5} et {—ws, 7a4, x5} ; elles ne contiennent que
des littéraux appartenant a Lit({xs, 4, 25}) (la clause {~as, x4, ~25, 76, 727}
contient le littéral positif x4, mais x4 n’est pas libre car Oce(—x4) C
Oce(xs) et mas appartient & cette clause).

On peut remarquer que les clauses d’une formule X-ordonnée peuvent

étre de trois types:

e clauses sur X contenant au plus un littéral positif libre.

e clauses sur V' contenant un ou des littéraux négatifs ou liés de Lit(X)
ainsi que un ou des littéraux de Lit(V \ X)), mais ne contenant aucun
littéral positif libre de Lit(X).

e clauses sur ’ensemble V' \ X.

On remarque que F est ordonnée ssi F est V-ordonnée, et que F est
ordonnée-renommable ssi elle est V-ordonnée-renommable. On montre
que si F est X-ordonnée-renommable avec X # (), et F ne contient pas
de clause unitaire, alors décider si F est satisfaisable se raméne a décider
si un sous-ensemble strict de F est satisfaisable.

Notation 3 Soit X C V. On note Reste(F,X) Uensemble {C € F |
C N Lit(X)=0}.

Proposition 81 Si F est X-ordonnée-renommable et ne contient pas
de clause unitaire positive, alors F est satisfaisable ssi Reste(F,X) est
satisfaisable.

Preuve:

(=) Immédiat.

(<) Cas particulier : F est X-ordonnée. Soit M C Lit(V'\ X) un modeéle
de Reste(F,X). Soit F' = {C" C Lit(X) | il existe C € F\ Reste(F,X)
telle que CNM = (et C' = C\M}. Soit C' € F' et C' € F\ Reste(F, X)
tel que CN M = et C' = C \ M. Par hypotheése, C' contient un littéral
[€ Lit(X) tel que [est négatif ou [est lié dans C' par rapport a F. On a
[€ C"car M C Lit(V\ X). Supposons que [est lié¢ dans C' par rapport
a F. On va prouver que [est lié dans C’ par rapport a F’. Supposons
que Oceri(1) # 0. Alors Ocer(l) # () et il existe t € C' (1 # 1) tel que
Occr(l) C Ocer(). Ona CNM =), donc t &€ M et T & M. De plus,

104

2.1. Présentation

t € M, puisque dans le cas contraire f € M, Ocer () =) et Ocer (I) = 0
D'ott t € C', Ocer(I) C Ocer(1), et | est lié dans C' par rapport a F'.
Ceci montre que toute clause C’ € F’ contient un littéral négatif ou un
littéral lié dans C".

Donc F’ est satisfaisable (Prop. 69). Soit M’ un modéle de F'. M UM’
est cohérent, car var(Reste(F, X)) Nvar(F') = 0. Soit C € F. Ou bien
C' N M # (), ou bien il existe €' € F' telle que C' C C, C"' N M' £ () et
C' N M # 0. Donc F est satisfaisable.

Cas Général: F est X-ordonnée-renommable. Se déduit directement
du cas précédent, car le renommage préserve la satisfaisabilité. O

. F . . :
La relation = peut étre utilisée pour caractériser le fait que F est
X-ordonnée-renommable.

Proposition 82 F est X-ordonnée-renommable ssi il existe un ensemble
de littéraux R C Lit(X) tel que R est cohérent, F-clos et complet pour
X.

Preuve: La preuve de cette proposition est pratiquement la méme que
celle de la Prop. 77. Il suffit de remplacer V' par X. O

Exemple: On peut voir (Fig. 2.1) que ’ensemble des noeuds {x3, ~x4, 25}
est Gi-clos. On voit aussi que 'ensemble {z1, 725} est cohérent et Gy-clos,
donc G; est aussi {1, x5 }-ordonnée-renommable.

Proposition 83 Soit X; C V et Xy C V. Si F est X -ordonnée-
renommable et Xq-ordonnée-renommable alors F est (X1UX3)-ordonnée-
renommable.

Preuve: Grace a la Prop. 82, on obtient qu’il existe By C Lit(Xy) et
Ry C Lit(Xs) tels que Ry et Ry sont cohérents, F-clos et complets res-
pectivement pour les ensembles X; et X,. L’ensemble R = R; U(Ry\ Ry)
est cohérent et complet pour X; U X;. On prouve maintenant que R est
F-clos. Soit [€ R. Sil € Ry alors Clos(l) € Ry € R car Ry est F-clos.
Sil € Ry \ Ry alors Clos(l) € R,. Le lemme 78 avec [= R; montre
que Clos(l) € (Ry \ Ry) C R. La conclusion est une conséquence de la
Prop. 82. O

On cherche maintenant & caractériser le plus grand ensemble X tel
que F soit X-ordonnée-renommable. Celui-ci est unique, grace a la pro-
position ci-dessus.

Définition 35 (base ordonnée, OReste(F)) Soient Xy,..., X}, tous
les sous-ensembles de V' tels que F est X;-ordonnée-renommable et B =
X1 U...UXyg. La Prop. 83 implique que F est B-ordonnée-renommable.

105

Chapitre 2. Formules presque ordonnées

Q' Ts

® U3 ® Ty [i)
F1G. 2.1 = Graphe G(Gy)

L’ensemble B sera appelé la base ordonnée de F et notée O Base(F). On
utilisera la notation O Reste(F) pour représenter la formule Reste(F, O Base(F)).

Exemple: L’ensemble {zq,xy, 3, 24,25} est cohérent et Gi-clos; par
contre les littéraux xg, g, v7, "7 appartiennent a une seule composante
fortement connexe de G(Gy) (voir Fig. 2.1) il n’existe donc pas d’ensemble
cohérent et Gi-clos contenant un de ces littéraux, ils n’appartiennent donc
pas a la base ordonnée de GG(Gy). Donc OBase(Gy) = {x1, 29, 3, x4, 25}
et la formule Gy est {xy,x9, 3, x4, 25 }-ordonnée-renommable (et méme
{1, 22, x3, 24, x5 }-ordonnée).

Corollaire 84 Si F ne contient pas de clause unitaire, alors F est sa-
tisfaisable ssi O Reste(F) est satisfaisable.

On remarque donc que si F ne contient pas de clause unitaire et que
OReste(F) = (), alors F est satisfaisable.

Nous présentons une définition alternative de la base ordonnée qui

utilise la relation :f>

Proposition 85 OBase(F) = {x € V | Clos(x) est cohérent ou Clos(—x)
est cohérent}.

106

2.2. Génération a délat polynémial

Preuve: Soit + € V et R C Lit(OBase(F)) tel que R est cohérent,
F-clos et complet pour OBase(F) (Prop. 82). Si € OBase(F), alors
x ou —a appartient & R, donc Clos(xz) ou Clos(—x) est cohérent. Sup-
posons maintenant que Clos(x) soit cohérent (I’autre cas est similaire).
Soit X = var(Clos(x)). La Prop. 82 implique que F est X-ordonnée-
renommable. Donc, X C OBase(F) et v € OBase(F). O

Cette caractérisation de la base ordonnée d’une formule nous permet
de déduire de nouvelles propriétés pour les bases ordonnées et les restes
ordonnés.

Proposition 86 Si F' C F alors OReste(F') C OReste(F).

Preuve: On observe que pour tous [,t € Lit(var(F')), si Ocer(l) C
Ocer(t), alors Ocer (1) C Ocer(t). Donc tout arc de G(F') est un arc de
G/(F). Donc pour tout littéral [€ Lit(var(F')), si Closz(l) est cohérent,
alors Closz/(l) est cohérent. D’ott OBase(F) N var(F') € OBase(F').
Soit C' € OReste(F'). On a C' N Lit(OBase(F)) C CN Lit(OBase(F')).
Par définition du reste ordonné C' N Lit(OBase(F')) = 0, donec C' N
Lit(OBase(F)) =0 et C € OReste(F). O

On peut remarquer que la base ordonnée de OReste(F) peut étre
non vide, dans ce cas, OReste(OReste(F)) est strictement inclus dans
OReste(F). 1l est donc possible de répéter ce processus tant que 1’on n’a
pas obtenu une formule avec une base ordonnée vide.

Définition 36 (formule presque ordonnée) Soit OReste-itéré(F) le
sous-ensemble de F défini récursivement : st O Base(F) =) alors OReste-
itéré(F) = F sinon OReste-itéré(F) = OReste-itéré(O Reste(F)). Une
formule F appartient & la classe presque ordonnée, si OReste-itéré(F) =

0.
Exemple: OReste(Gy) = {{xe, 27}, {72, 727} } (puisque OBase(G,) =

{x1, 22, 23,24, 25}). OReste(Gy) est Horn-renommable (on renomme x;
par exemple) donc ordonnée-renommable. Ceci implique que,
OReste(OReste(Gy)) = 0. Donc, Gy est une formule presque ordonnée.

Corollaire 87 Si F est presque ordonnée et ne contient pas de clause
unitaire, alors F est salisfaisable.

2.2 Génération & délai polynoémial
On va maintenant prouver que, méme si la classe presque ordonnée

ne vérifie pas P1, on peut tout de méme générer tous les modéles de telles
formules avec un délai O(nV).

107

Chapitre 2. Formules presque ordonnées

Proposition 88 Si F' C F et F est presque ordonnée, alors F' est
presque ordonnée.

Preuve: Si OReste-itéré(F) = (), alors la Prop. 86 implique que OReste-
itéré(F')y = 0. O

La proposition suivante donne une caractérisation des formules presque
ordonnées qui va nous étre utile par la suite.

Proposition 89 F est presque ordonnée ssi il existe k (k> 1), Xq,..., X},
X, CV (1 <i<k)etF,... . Fr, ;, CF (1 <1< k), tels que Fy = F,
Fi est X;-ordonnée-renommable (1 < i < k), Fiy1 = Reste(F;, X,)
1<i<k—1)etF=0

Preuve: (=) Soit 71 = F, Fipy = OReste(F;) (¢ > 1) and X; =
OBase(F;) (i > 1). Par définition, F; (i > 1) est X;-ordonnée-renommable,
et, par hypothese, il existe k (k > 1) tel que Fp = 0.

(<) La preuve se fait par récurrence sur k.

k=10naF =0, OReste(F) =10 et F est presque ordonnée.

k > 1 Par hypothése de récurrence, F; est presque ordonnée. Par dé-
finition de O Base(Fy), OReste(F1) C Fy. Donc O Reste(F;) est presque
ordonnée (Prop. 83), OReste-itéré(Fy) = () et Fy est presque ordonnée. O

Remarque 6 Si F est presque ordonnée, alors il existe une formule
presque ordonnée F' telle que F est obtenue a partir de F' en renommant
certaines variables et de plus il eviste k (k> 1), X1,.... X (X; C V)
(1 <i<Ek)etF,. ..., Fr, (F;CF) (1 <i<k)tels que F = F', F;
est X;-ordonnée (1 <1 < k), Fix1 = Reste(F;, X;) (1 <i<k—1) et
Fr=10.

Malheureusement, la propriété P1 n’est pas vérifiée pour la classe
presque ordonnée.
Exemple: Soit U = {{x1}, {a2}, {as}, {xa}, {a5}}, Unit(Gr U U) =
{x1, 22, x5, 24, x5} et Noyau(GiUU) = { {xe, n27}, {726, 7}, {26, 27},
{zg, 27} }. Quel que soit 'ensemble X C {xg, 27} la formule Noyau(G; U
U) n’est pas X-ordonnée-renommable, donc Base(Noyau(G, UU)) = 0,
et donc Noyau(Gy UU) n’est pas une formule presque ordonnée.

Nous proposons d’ordonner les variables de F de telle sorte que si
I’ensemble U/ de clauses unitaire est construit a partir des ¢ premiéres
variables de notre ordre, alors la satisfaisabilité de F U U peut étre testée
en temps polynémial. Ceci correspond a la facon dont I'ensemble U est
construit dans Ialgorithme Génération (Partie I, Chap. 1, Fig. 1.1)

108

2.2. Génération a délat polynémial

Définition 37 (permutation convenable, ensemble convenable) Supposons
que F est presque ordonnée. Il existe Xq,... Xy, X; CV (1 <i < k),

et Fi,....Fr, Fi CF (1 <1 < k), tels que F; = F, X; = OBase(F;)

(1 <i < k), Fisz1. = OReste(F;) (1 <1 < k—1) et Fr = 0. Soit

W=V \(X,U...UXy). Une permutation (x1,...,x,) des variables de

F est dite convenable si pour tout j (1 <j<n), ona{xy,...,x;} CW

ou bien il existe 1 tel que {xq,...,2;} =WUX;UX) 1 U...UX;1;UX

avee X C X;. Un ensemble U de clauses unitaires est dit convenable s/

existe une permutation convenable (x1,...,x,) et i € {1,...,n} tels que

var() ={x; |1 <5 <i}.

Exemple: On calcule une permutation convenable pour G; (nous al-
lons utiliser les notations présentées dans la définition ci-dessus). F; =
Gi, X1 = OBase(Gy) = {a1,x9, 23, 24,25}, Fo = OReste(Gy), Xz =
OBase(OReste(Gy)) = {xe, 7}, et k = 2 puisque Reste(Fy, Xa) = 0.

[’ensemble W est vide. Soit p; la permutation (7, e, x1, g, T3, T4, T5),

p1 est une permutation convenable, il en est de méme pour la permu-
tation py = (we, x7, 2, T3, 1,24, ¢5). L'ensemble U = {{—as}, {x7}} est
convenable car p; est une permutation convenable, i = {{—-x1}, {z2},
{z¢}, {—2r}} est convenable car py est.

La proposition suivante permet de dire qu’a chaque pas de 'algo-
rithme Génération (Partie I, Fig. 1.1), on peut, dans le cas ot U est un
ensemble convenable, tester la satisfaisabilité de F U U en n’utilisant que
la résolution unitaire.

Proposition 90 Supposons que F est presque ordonnée el ne contient
pas de clause unitaire. Soit U un ensemble convenable de clauses uni-
taires. Alors F UU est satisfaisable ssi Unit(F UU) est cohérent.

Preuve:
(=) Immédiat.
(<) Il est suffisant de montrer que Noyau(F UU) est presque ordon-
née (Prop. 1 et Corollaire 87). La proposition 89 nous dit qu’il existe
Xi,oo 3 Xy, X SV (1 <0 < k),et Fr,ooy Fey Fi CF (1 <0 < k),
tels que Fy = F, X; = OBase(F;) (1 < i < k), Fixr = OReste(F;)
(1<i<k—1)et F,=0.Pour tout i (1 <i <k),F; est X;-ordonnée-
renommable. Sans perte de généralité, on peut supposer que F; est X;-
ordonnée (1 < ¢ < k) (voir Remarque 6). Soit G, = {C" C Lit(V) | il
existe C € F,CNUnit(FUU) =D et C' = C\Unit(FUU)} (1 <
i < k). Soit Vi = X;Nwar(G;) (1 <0< k). On a G = Noyau(FUU),
G: C G (1 <i<k)et Gy =0 Ilsuffit de prouver que G; est Y;-ordonnée
(1 <0 <k)et Giy1 = Reste(G,Y:) (1 <i <k—1) (Prop. 89).

Dans un premier temps on va prouver que G; est Y;-ordonnée (1 <
i < k). Soit €' € G,. La définition des formules G; nous dit qu’il existe

109

Chapitre 2. Formules presque ordonnées

C € F; telle que CNUnit(FUU) =0, et C" = C\ Unit(FUU). Soit
[€ C'. Supposons que [est lié dans C' par rapport a F;. On va prouver
que [est lié dans C’ par rapport a G;. Supposons que Occg, (1) # 0. Alors
Ocer. (1) # 0 et il existe t € C' (1 # 1) tel que Ocer (1) C Occr,(f). On
a CNUnit(FUlU) = 0, donc t ¢ Unit(FUU) et T ¢ Unit(FUU).
De plus, t & Unit(FUU), Occg,(t) = D et Oceg, (1) = 0. Donc t € ',
Occg, (1) C Oceg, (1) et | est lié dans O’ par rapport & G;. Maintenant,
on suppose que [€ Lit(Y;), et [est un littéral positif libre dans C’ par
rapport & G;. Alors [€ Lit(X;) et [est libre dans C par rapport a F;. Par
hypothése, F; est X;-ordonnée, donc C' C Lit(X;) et [est le seul littéral
positif de C qui est libre dans C'. Donc €' C Lit(Y;) et [est le seul littéral
positif de C” qui est libre dans (. Ceci prouve que G; est Y;-ordonnée.
On prouve maintenant que G;y1 = Reste(G,,Y:) (1 <@ < k—1).
(C) On a Fiy1 = Reste(F;, X;). Donc Fipy € Fi et Gy C G,. Soit
C" € Giyr. 1l existe C € Fiqq telle que ¢ C C. On a C € Reste(F;, Xi),
c’est pourquoi C'N Lit(X;) =0, C"' N Lit(Y;) = 0 et C’ € Reste(G;, Yi).
(D) Soit C" € Reste(G;,Y;). On a C' C G; et C' N Lit(Y;) = 0. 1l existe
C € F; telle que C N Unit(FUU) =D et €' = C\ Unit(FUU). On
prouve d’abord que var() N X; = 0 (1 < j < i) (ceci sera néces-
saire pour pouvoir appliquer le Lemme 91). On a var(C') N X; =
(1 <j<i)pour C € F; et var(C’') N X; = () puisque var(C’')NY; = (.
Donc var(C’) € V\ (X; U...UX;). On a var(C") Nwvar(U) = O car
C'NUnit(FUU) =D et C'"NUnit(FUU) = 0. Par hypothese, U est
convenable, donc var(U)N X; =0 (1 < j <i). Maintenant on va prou-
ver que C' € F; 1. On suppose que C' & Reste(F;, X;). Alors il existe t €
CNLit(X;). On at & C' puisque C'N Lit(Y;) = 0, donc t € Unit(F UU).
Sit=ux (z € X;),alors le Lemme 91(i) implique qu’il existe r € Lit(V)
(r # —x) tel que r € C et r € Unit(FUU), contradiction. Supposons
quet=-z (x € X;).OnaC' #£0et C'NLit(Y;) =0, dou C € Lit(X;).
Donc z est lié dans C' par rapport & F;, et le Lemme 91(ii) implique qu’il
existe s € Lit(V) (s # x) tel que s € C' et s € Unit(F UU), contradic-
tion. On obtient donc que C' € Reste(F;, X;), C € Fipr et C' € Giyq. O

Lemme 91 Supposons que F ne contient pas de clause unitaire et qu’il
eviste Xq,...,Xp, X; CV 1 <0 < k), et Fr,....F, F; CF (1
i < k), tels que Fy = F, F; est X;-ordonnée (1 < i < k), Fi
Reste(F;, X;) (1 <i<k—1) et Fr =10. Soit U un ensemble de clauses
unitaires tel que Unit(F UU) est cohérent. Soit 1o € {1,...,k} tel que
pour tout j (1 < j <ig)var(U)NX; =0. Soit | € Lit(X;) (1 <j <ip)
tel que Ocer, (1) £ 0, et soit o = (Cy,...,C,) une dérivation unitaire de
F Ul telle que C, ={l} et C; #{1} (1 <i<p).

[N

i. Sil =ua (x € X;), alors il eviste r € Lit(V) (r # —a) tel que
Occr,(—x) € Ocer,(r) et {r} € {Cy,...,Cpo1}.

110

2.2. Génération a délat polynémial

ii. Sil=-x (v € X;), alors pour tout C € F;, si v € C et x est lié
dans C' par rapport a F;, alors il existe s € Lit(V) (s # x) tel que
seCet{s}e{Cy,....,Cp1}.

Preuve: Par hypothese {l} ¢ FUU. Donc, il existe C' € {Cy,...,Cp1}
telle que O = {l,l1,....0,} (b > 1), I; # L et {l;} € {Cy,...C,1}
(1 <4 < h). Nous faisons une preuve par récurrence sur le nombre ¢ de
clauses unitaires sur X, (1 < ¢ < j) qui apparaissent dans o.

- q=1 C, = {l} est une clause unitaire sur X;. Donc pour tout ¢

(1 <o <h),var(l;) e VN (X1 U...UX;). Donc C'" € F;.

i. Onal=ux (z € X;). F; est X;-ordonnée, donc x est lié dans
C' par rapport a F;. Par hypotheése, Occr,(—z) # (), c’est
pourquoi il existe 7 (1 <1 < h) tel que Oceg, (-x) C Ocer, (Z),
c’est ce que 'on cherchait a prouver.

ii. On al=—-a (x € X;). Soit C € F; tel que x € C. Si x est lié

dans C' par rapport & Fj, alors il existe ¢ (1 <1 < h) tel que
l; € C car C" € Occr,(—x).

—q>1 Soit ' (1 < 5" < ig) tel que C" € Fji et j' est maximal.
On a j' < jpour | € Lit(X;), et C' N Lit(X;1) # () puisque j' est
maximal.

On prouve d’abord que pour tout 7 (1 < ¢ < h) [; n’est pas un
littéral négatif sur X;. Supposons qu’il existe ¢ (1 < ¢ < h) tel
que [; = 7y et y € Xy. On a{y} € {Cy,...,Cp1}. 1l existe p/
(1 < p' < p)tel que Cp =A{y} et Cy # {y} (1 < u < p'). Soit
o' =(Cy,...,Cp). On a OCC}‘]/(_‘y) £ 0 (C' e Occfj,(—'y)). Donc
les hypotheses du Lemme 91(i) sont satisfaites par y et o’. Par
hypothése de récurrence, il existe r € Lit(V) (r # —y) tel que
Occf],(—'y) C Occf],(r) et {r} € {Cy,...,Cp_1}. Donc r € C'. Si
r = [, alors {l} € {C1,...,Cp_1}, ce qui entre en contradiction
avec I’hypothése. Supposons que r # [. Alors il existe ¢ (1 < a <
h) tel que r = [,, donc {7} € {Cy,...,C,_1}. Ce qui implique
que Unit(F UU) est incohérent , contradiction. Ceci prouve que [;
(1 <u < h) n’est pas un littéral négatif de X;.

On considére maintenant deux cas:

1. Supposons qu’il existe 7 (1 <@ < h) tel que [; =y et y € Xj.
On a {—~y} € {Cq,...,Co1}. 1l existe p' (1 < p' < p) tel
que Cp = {—y}t et Cyp # {y} (1 < u < p). Soit o/ =
(C1y.o.yCp). On a Occfj,(y) £ 0 (C' e Occfj,(y)). Donc les
hypothéses du Lemme 91(ii) sont satisfaites par -y et o’. Sup-
posons que y est lié dans C’ par rapport a Fj. Par hypothése
de récurrence, il existe s € Lit(V) (s # y) tel que s € ' et

111

Chapitre 2. Formules presque ordonnées

{s} € {C1,...,Cp_1}. Si s =1, alors {I} € {Cy,...,Cp_1},
ce qui entre en contradiction avec les hypothéses. Supposons
que s # [. Alors il existe a (1 < a < h) tel que s = [,, donc
{5} € {C1,...,C,1}. Par conséquent, Unit(FUU) est in-
cohérent, contradiction. Ceci prouve que y est libre dans C’
par rapport a F;. Par hypothéses Fj est X;-ordonnée, donc
C' C Lit(X;). Mais [€ C" N Lit(X;), donc j = 3" et C' € F,.

i. Onal=ux(x € X;) et x est lié dans C’ par rapport a F;.
Par hypothése, Occer, () # 0, c’est pourquoi il existe i
(1 <0 < h) tel que Ocer,(mx) C Occey, (;), qui est le
résultat recherché.

ii. Onal= -z (x € X;). Soit C € F; tel que x € C.Si x est
lié dans C par rapport a F;, alors il existe ¢ (1 < ¢ < h)
tel que [; € C' car C' € Occg, (—a).

2. Il reste & examiner le cas ot C' N Lit(X;) = {l}. Alors on a
j=7,CeFetvar(l;y) e V\(X1U...UX;) (1 << h).

i. Onal=ux (2 € Xj), et x est lié dans C” par rapport a

F;. On conclue de la méme maniére que pour le cas 1i.

ii. Onal = -2 (x € X;). On conclue de la méme manieére
que pour le cas lii.

Ces résultats nous permettent donc de proposer une méthode efficace
pour générer tous les modéles des formules presque ordonnées.

Proposition 92 Si F est presque ordonnée et ne contient pas de clause
unitaire, alors les modeéles de F peuvent étre générés avec un délai O(nN),
st une permutation convenable est donnée.

Preuve: On rappelle que la résolution unitaire peut étre implémentée
de maniére linéaire. Donc pour tout ensemble convenable U de clauses
unitaires, on peut décider en temps O(N) si FUU est satisfaisable
(Prop. 90). Donc, si la permutation qui est donnée en entrée a 1’algo-
rithme Génération (Partie I, Chap. 1, Fig. 1.1) est convenable, alors les
modeles de F peuvent étre générés avec un délai O(nN). O

2.3 Reconnaissance des formules presque or-
données

Pour tester si une formule est presque ordonnée, la premiére chose a
faire est de calculer la base ordonnée de cette formule.

112

2.3. Reconnaissance des formules presque ordonnées

Proposition 93 La base ordonnée de F peut étre calculée en temps

O(nN).

Preuve: Soit « € V. On déduit de la Prop. 85 que # ¢ OBase(F)

ssi @ :f>* -z et - é* x. Donc @ € OBase(F) ssi @ et —a n’ap-
partiennent pas a la méme composante fortement connexe de G/(F). On
rappelle que la construction de G/(F), et le calcul de ses composantes for-
tement connexes peut étre fait en temps O(nN) (preuve de la Prop. 80).
O

Connaissant la base ordonnée d’une formule, il est facile de calculer
son reste ordonné, si on itére ce calcul, on obtient le reste itéré de la
formule. Déterminer si celui-ci est vide permet de dire si F est presque
ordonnée.

Proposition 94 On peut tester si une formule F est presque ordon-
née, et (si ¢’est le cas) construire une permutation convenable, en temps

O(n*N).

Preuve: L’ensemble O Base(F) peut étre calculé en temps O(nN) (Prop. 93).
On remarque que si OBase(F) est connu, alors il est facile de calculer
OReste(F) en temps O(N). Donc on peut obtenir OReste(F) en par-
tant de F en temps O(nN). Si OBase(F) n’est pas vide, alors I’ensemble
des variables sur lequel O Reste(F) est défini est strictement inclus dans
I’ensemble V'; par conséquent, le calcul de OReste-itéré(F) demande au
plus n étapes, et peut donc étre effectué en temps O(n*N). On obtient
en plus comme sous-produit de ce calcul les ensembles Xi,..., X} et
les formules Fy, ..., Fi, tels que Fy = F, X; = OBase(F;) (1 <1 < k),
Fiv1 = OReste(F;) (1 <1 < k—1) et Fi, = . Il est facile de construire en
temps O(n) une permutation convenable lorsque 'on connait Xi,..., Xj

et V\ (X, U...UXy). O

113

Chapitre 2. Formules presque ordonnées

114

Conclusion et Perspectives

Conclusion

Dans cette thése, le fil conducteur que nous avons suivi est la géné-
ration a délai polynémial de tous les modéles d’une formule CNF pro-
positionnelle, et plus précisément, la génération a délai polynémial en
utilisant uniquement la résolution unitaire. Cela nous a conduit a établir
des résultats intéressants:

Nous avons donné un algorithme permettant de générer les modéles
de toute formule. Nous avons montré que cet algorithme est efficace (c’est
a dire que I’écart entre deux solutions consécutives est polynémial) pour
presque toutes les classes pour lesquelles un algorithme polynémial est
connu pour résoudre le probléeme SAT. Les seules classes pour lesquelles
notre algorithme n’est pas efficace, sont celles pour lesquelles 'existence
d’un tel algorithme impliquerait que P=NP.

Nous nous sommes aussi attachés & la classe des formules Horn éten-
dues introduite par Chandru et Hooker. Nous avons étudié les origines
de cette classe, et avons prouvé que 'on peut générer tous les modéles
de telles formules avec un délai O(nN) en n’utilisant que la résolution
unitaire. Malheureusement, il n’existe pas, actuellement, d’algorithme de
reconnaissance des formules Horn étendues. Nous avons donc du travailler
sur deux classes proches, les formules Horn étendues simples et Horn élar-
gies simples pour lesquelles nous avons proposé une analyse pointue qui
nous a permis de dégager une structure importante: les agrégats. Cette
structure nous a amenés & la rédaction d’un algorithme linéaire de recon-
naissance des formules Horn élargies simples et Horn étendues simples.

Le résultat le plus intéressant de cette thése est sans doute la pré-
sentation et ’étude d’une nouvelle classe des formules, que nous avons
appelée classe des formules ordonnées. Cette extension de Horn peut étre
reconnue en temps O(nN); on peut tester si une formule ordonnée est
satisfaisable en temps O(N), en utilisant uniquement la résolution uni-
taire, exactement comme pour une formule de Horn ; on peut générer les
modeles de ces formules avec un délai O(nN). On peut de plus tester
si une formule peut étre renommeée en une formule ordonnée en temps
O(nN) en utilisant une technique trés proche de celle utilisée pour tester
si une formule est Horn-renommable. Ce résultat est non trivial, en effet,

115

Conclusion et Perspectives

pour les formules Horn généralisées, Eiter et al. [23] ont prouvé que ce
probléme est NP-complet. On généralise encore cette classe en définis-
sant un ensemble de formules, appelées presque ordonnées qui ne sont
pas ordonnées-renommables, mais qui le sont presque. Nous proposons
en outre une méthode pour générer tous les modeles des formules presque
ordonnées avec un délai polynémial (en n’utilisant que la résolution uni-
taire).

On peut résumer les résultats obtenus dans cette thése en examinant
le tableau de la génération a délai polynomial (Fig. 2) et le graphe (Fig. 3)
représentant les inclusions des classes que nous avons plus particuliére-
ment étudiées ici.

Classe Reconnaissance Satisfaisabilité Génération
Horn O(N) O(N) O(nN)

Horn renommable O(N) O(N) O(nN)
Binaire O(N) O(N) O(nN)
Equilibrée polynémial O(N) O(nN)

Iy O(n*N) O(n*N) O(n*+tN)
I';,-renommable NP-complet O(n*N) O(n*+tN)
Quad O(N?) O(N?) non si P#NP
Q et Ay O(nf+h) O(nf+h) non si P#£NP
Presque Horn(*) O(nN) O(1) O(nN)
g-Horn O(N) O(N) O(nN)

Horn étendue (resp. élargie) Pb ouvert O(N) O(nN)

Horn étendue (resp. élargie) simple | O(N) O(N) O(nN)
Ordonnée O(nN) O(N) O(nN)
Ordonnée-renommable O(nN) O(N) O(nN)
Presque ordonnée(*) O(n?N) O(1) O(nN)

(*) sans clause unitaire

FiG. 2 — Génération a délat polynémial

Perspectives

Ces résultats nous ouvrent les portes de recherches dans d’autres di-
rections, nous présentons ici quelques idées & creuser.

Par exemple il nous semble possible d’utiliser les résultats établis
lors de I’étude des formules Horn étendues simples pour rechercher un
algorithme polynomial (sans doute ne sera t’il pas linéaire) permettant
de déterminer si une formule est Horn étendue.

L’algorithme que nous avons présenté pour générer tous les modéles
d’une formule peut trés facilement étre adapté aux problémes de satis-
faction de contraintes (CSP). On peut étudier ’ensemble des classes de

116

Horn Binaire

[)
Sat |Insat
. []
Horn étendue simple
Horn étendue Horn élargie simple Horn-renommable q-Horn
R\
[]
Sat Insat
. []
Horn élargie Ordonnée
= !

Ordonnée-renommable Presque Horn

Vs

/‘

Presque ordonnée

=

FiGg. 3 — Graphe d’inclusion des principales classes étudiées dans cette
these

CSP pour lesquelles on connait un algorithme polynémial et regarder
celles pour lesquelles il est possible de générer toutes les solutions & délai
polynémial. On peut essayer de trouver un analogue a la résolution uni-
taire et voir quelles sont les classes pour lesquelles on peut trouver toutes
les solutions avec cette seule méthode.

De méme que I'étude des formules de Horn a conduit & la définition
des fonctions booléennes de Horn, il est peut-étre intéressant de regarder
les modeéles des formules ordonnées et de voir s’il est possible de défi-
nir un concept similaire que ’on pourrait appeler «fonctions booléennes
ordonnées ».

On peut en outre chercher quels problémes peuvent se représenter avec
des formules ordonnées ou presque ordonnées. Peut-étre des problémes

117

Conclusion et Perspectives

concrets se modélisent-ils facilement avec des formules appartenant a
I'une de ces classes?

118

Index

Index alphabétique

I', 38 CPos(x), 15, 54, 64

Ty, 43

T .43 délai polynémial, 7

7, 54 délai polynomial, 14
:}'>7 99 dérivable, 15

‘ e taire. 1
équation, 59 dérivation unitaire, 15

équilibrée, 20, 24 ensemble convenable, 32, 108

acceptable, 72 foret, 71
Agrégat, 67 formule, 14
agrégat, 89 formule équilibrée, 24
ancetre, 64 formule binaire, 22
anchor(A",T), 72 formule de Horn, 14, 20
arborescence, 8, 53, 54, 56, 64, 71 formule GHorn, 38
Arborescence acceptable, 72 formule Horn-renommable, 21
arborescence acceptable, 73 formule presque Horn, 30
Arborescence viable, 81
arbre, 53 génération a délai polynomial, 14
arc, h4 génération a délai polynémial, 6
GHorn, 38

base de Horn, 27-29
base ordonnée, 105 hiérarchie I, 38
binaire, 19, 22 hiérarchie {A}, 46

L hiérarchie {2}, 46
candidat, 40 hiérarchie polynémiale, 40
Chandrasekaran, 54, 59 hiérarchie polynomiale, 40
chemin, 8, 53, 54 Horn, 14, 19-21
classe Racine, 44 Horn élargie, 51
clause, 14 Horn étendue simple, 51
clause de Horn, 14 Horn élargie, 65, 89
clause de Horn, 20 Horn élargie simple, 8, 51, 64, 89
clause unitaire, 14, 58 Horn élargies simples, 71
close par fixation, 40 Horn étendue, 8, 51, 53, 54, 58, 59,
CNeg(x), 15, 54, 64 65, 89
cohérent, 14 Horn étendue simple, 8, 65, 89
convenable, 32, 108 Horn renommable, 27

119

Index

Horn renommables, 19 renomme, 15
Horn-renommable, 21 Reste(F), 28, 29
identité, 60 satisfaisabilité, 58
inégalités, 60 satisfaisable, 15, 55, 57, 61
incohérent, 14 solution entiere, 59
sous-matrice, 25
IAgrégats, 69 systeme d’équations, 59
lie, 94 systéme linéaire, 59
libre, 94
littéral, 14 Unit, 56
Unit(F), 16
matrice, 25, H8-61 unitaire, 14
modéle, 15
variable propositionnelle, 14
N, 7 viable, 81
n, 7
neg(C), 15, 54, 64 X-Horn, 28
Noyau, 56 X-Horn-renommable, 28
Noyau(F), 16 X-ordonnée, 103

X-ordonnée-renommable, 103
Occ(l), 15
ordonnée, 95, 103, 107
ordonnée-renommable, 97, 98
ordre acceptable, 28
OReste(F), 105

parent, 64

partiellement, 27

permutation convenable, 32, 108
pied, 64

pos(C), 15, 54, 64

presque ordonnée, 107

presque Horn, 27, 28, 30
programmation linéaire, 54

q-Horn, 28, 35

R(t), 73

réalisation arborescente, 76
résolution unitaire, 62
résolution unitaire, 15, 27, 55
résolution unitaires, 19
Racine, 44

racine, 53, 54, 64
renommable, 97, 103
renommage, 15

120

[1]

2]

Bibliographie

B. Aspvall. Recognizing disguised NR(1) instances of the satisfiabi-
lity problem. Journal of Alogrithms, 1:97-103, 1980.

B. Aspvall, M. F. Plass, and R. E. Tarjan. A linear-time algorithm
for testing the truth of certain quantified Boolean formulas. Informa-
tion Processing Letters, 8(3):121-123, Mar. 1979. See also erratum

3].

B. Aspvall, M. F. Plass, and R. E. Tarjan. Erratum: « A linear-time
algorithm for testing the truth of certain quantified Boolean formu-
las» [Inform. Process. Lett. 8 (1979), no. 3, 121-123. Information
Processing Letters, 14(4):195-195, June 1982. See |[2].

E. Benoist and J.-J. Hébrard. Recognition of simple enlarged
Horn formulas and simple extended Horn formulas. Technical Re-
port 5, Université de Caen, Cahier du GREYC, Université de Caen
(France), 1998.

K. S. Booth and G. S. Lueker. Testing for the consecutive ones
property, interval graphs, and graph planarity using P-Q tree algo-
rithms. J. Comput. System Seci., 13:335-379, 1976.

E. Boros, Y. Crama, and P. .. Hammer. Polynomial-time inference
of all valid implications for Horn and related formulae. Annals of
Mathematics and Artificial Intelligence, 1:21-32, 1990.

E. Boros, P. L. Hammer, T. Ibaraki, A. Kogan, E. Mayoraz, and
[. Muchnik. An implementation of logical analysis of data. Technical
Report 22-96, Rutcor Research Report, RUTCOR, Rutgers Center
for Operations Research, Bush Campus, P.O. Box 5062, New Bruns-
wick, New Jersey 08903-5062, July 1996.

E. Boros, P. L. Hammer, and X. Sun. Recognition of g-Horn for-
mulae in linear time. DAMATH : Discrete Applied Mathematics and
Combinatorial Operations Research and Computer Science, 55, 1994.

E. Canfield and S. Williamson. A loop-free algorithm for generating
the linear extensions of a poset. Order, 12:1-18, 1995.

121

Bibliographie

[10]

[20]

[21]

122

R. Chandrasekaran. Integer programming problems for which a
simple rounding type of algorithm works. In e. W.R. Pulleyblank,
editor, Progress in Combinatorial Optimization, pages 101-106. Aca-
demic press Canada, Toronto, Ontario, Canada, 1984.

V. Chandru, C. Coullard, P. Hammer, M. Montanez, and X. Sun.
On renamable Horn and generalized Horn functions. Annals of Ma-

thematies, 1(1):33-47, 1990.

V. Chandru and J. N. Hooker. Extended Horn sets in propositional
logic. Journal of the ACM, 38(1):205-221, Jan. 1991.

C.-L. Chang and R. C.-T. Lee. Symbolic Logic and Mechanical Theo-
rem Proving. Academic Press, New York, 1973.

M. Conforti and G. Cornuéjols. A class of logic problems solvable by
linear programming. In IEEE, editor, Proceedings of the 33rd Annual
Symposium on Foundations of Computer Science, pages 670-675,
Pittsburgh, PN, Oct. 1992. IEEE. Computer Society Press.

M. Conforti, G. Cornuejols, A. Kapoor, and K. Vuskovié. Reco-
gnizing balanced 0, +1 matrices. In Proceedings of the Fifth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 103-111, Ar-
lington, Virginia, 23-25 Jan. 1994.

S. A. Cook. The complexity of theorem-proving procedures. In
Conference Record of Third Annual ACM Symposium on Theory of
Computing, pages 151-158, Shaker Heights, Ohio, 3-5 1971 1971.

Crama, Ekin, and Hammer. Variable and term removal from boolean
formulae. DAMATH : Discrete Applied Mathematics and Combina-
torial Operations Research and Computer Science, 75, 1997.

N. Creignou and J.-J. Hébrard. On generating all solutions of genera-
lized satisfiability problems. Informatique Théorique et Applications
/ Theoretical Informatics and Applications, 31(6):499-511, 1997.

M. Dalal. An almost quadratic class of satisfiability problems. In
W. Wahlster, editor, Proceedings of the 12th Furopean Conference
on Artificial Intelligence, pages 355-359. John Wiley and Sons, 1996.

M. Dalal and D. W. Etherington. A hierarchy of tractable satisfiabi-
lity problems. Information Processing Letters, 44(4):173-180, Dec.
1992.

P. Dietz, M. Furst, and J. Hopcroft. A linear time algorithm for the
generalized consecutive retrieval problem. Technical Report TR-79-
386, Department of Computer Science, Cornell University, Ithaca,

NY, 1979.

[22]

23]

[24]

[27]

[28]

[31]

[32]

[33]

T. Eiter, T. Ibaraki, and K. Makino. On disguised double Horn
functions and extensions. In 15th Annual Symposium on Theoretical

Aspects of Computer Science, volume 1373 of Incs, pages 50-60, Paris
France, 25-27 Feb. 1998. Springer.

T. Eiter, P. Kilpelainen, and H. Mannila. Recognizing renamable
genralized propositional Horn formulas is NP-complete. Discrete

Appl. Math., 59:23-31, 1995.

S. Even, A. Itai, and A. Shamir. On the complexity of timetable
and multicmmodity flow problems. SIAM Journal on Computing,
5:691-700, 1976.

H. Farreny and M. Ghallab. Eléments d’intelligence artificielle. Edi-
tions Hermeés, 1987.

H. N. Gabow and E. W. Myers. Finding all spanning trees of directed
and undirected graphs. STAM Journal on Computing, 7(3) :280-287,
Aug. 1978.

G. Gallo and M. G. Scutella. Polynomially solvable satisfiability pro-
blems. Information Processing Letters, 29(5):221-227, Nov. 1988.

M. Habib, R. McConnell, C. Paul, and L. Viennot. Lex-BFS and
partition refinement, with applications to transitive orientation, in-
terval graph recognition and consecutive ones testing . Technical
Report 96021, LIRMM, Montpellier, 1996. To appear in "Theoreti-

cal Computer Science".

M. Habib, C. Paul, and L. Viennot. A synthesis on partition refi-
nement : A useful routine for strings, graphs, boolean matrices and

automata. In Proc. STACS’98, pages 25-38, 1998.

R. Hariharan, S. Kapoor, and V. Kumar. Faster enumeration of
all spanning trees of a directed graph. In Proc. Jjth Worksh. Algo-
rithms & Data Structures, number 955 in Lecture Notes in Computer
Science, pages 428-439. Springer Verlag, 1995.

J.-J. Hébrard. A linear algorithm for renaming a set of clauses as a
Horn set. Theoretical Computer Science, 124 :343-350, 1994.

J.-J. Hébrard and P. Luquet. The Horn basis of a set of clauses.
Journal of Logic Programming, 34(1):59-66, Jan. 1998.

D. S. Johnson, M. Yannakakis, and C. H. Papadimitriou. On genera-
ting all maximal independent sets. Information Processing Letters,

27(3):119-123, Mar. 1988.

123

Bibliographie

[34]

[35]

[36]

[41]

[42]

[45]

[46]

[47]

124

A. D. Kalvin and Y. L. Varol. On the generation of all topological
sortings. Journal of Algorithms, 4(2):150-162, June 1983.

H. Kleine-Biining. On generalized Horn formulas and k-resolution.

Theoretical Computer Science, 116(2):405-413, Aug. 1993.

H. Kleine-Biining and T. Lettmann. Aussagenlogik : Deduktion und
Algorithmen. B. G. Teubner, Stuttgart, 1994.

H. Kleine-Biining and T. Lettmann. Propositional Logic: Deduc-
tion and Algorithms. Cambridge University Press, The Edinburgh
Building, Shaftesbury Road, Cambridge CB2 2RU, UK, 1999.

H. R. Lewis. Renaming a set of clauses as a Horn set. Journal of
the Association for Computing Machinery, 25(1):134-135, january
1978.

D. Loveland. Automatic Theorem Proving. Elsevier Science Publi-

shers North-Holland, 1978.

D. Pretolani. Hierarchies of polynomially solvable satifiability pro-
blems. Annals of Mathematics and Artificial Intelligence, 17:339—
357, 1996.

G. Pruesse and F. Ruskey. Generating linear extensions fast. SIAM.
J. Comp, page to appear, 1992.

R. Read and R. Tarjan. Bounds on backtrack algorithms for listing
cycles, paths, and spanning trees. Networks, 5:237-252, 1975.

E. Rich and K. Knight. Artificial Intelligence. McGraw-Hill, New
York, second edition, 1991.

J. 5. Schlipf, F. S. Annexstein, J. V. Franco, and R. P. Swamina-
than. On finding solutions for extended Horn formulas. Information

Processing Letters, 54(3) :133-137, May 1995.

A. Shioura, A. Tamura, and T. UnoA. An optimal algorithm for
scanning all spannig trees of an undirected graph. SIAM Journal on

Computing, 26(3)::678-692, 1997.

R. P. Swaminathan and D. K. Wagner. The arborescence-realization

problem. Discrete Applied Mathematics, 59 :267-283, 1995.

R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM
J. Computing, 1:146-160, 1972.

[48] S. Yamasaki and S. Doshita. The satisfiability problem for a class
consisting of Horn sentences and some non-Horn sentences in propor-
tional logic. Information and Control, 59(1-3) :1-12, Oct./Nov./Dec.
1983.

125

Bibliographie

126

Résumé

Nous nous sommes intéressés a 1’étude des classes de formules CNF
propositionnelles pour lesquelles il est possible de générer tous les mo-
deles de fagon efficace (i.e. avec un délai polynémial entre chaque modéle
généré).

Nous proposons un algorithme générique permettant de générer tous
les modeles d’une formule quelconque. Nous prouvons que pour les prin-
cipales classes de formules pour lesquelles on sait résoudre le probléme
SAT efficacement, notre algorithme génére les solutions avec un délai po-
lynémial. Cette étude nous pousse & étudier ensuite plus en détail les
classes de formules pour lesquelles la résolution unitaire est le seul outil
utilisé pour la génération.

(C’est pourquoi nous nous intéressons aux formules Horn étendues in-
troduites par Chandru et Hooker. Malheureusement, il n’existe pas encore
d’algorithme polynémial permettant de tester si une formule appartient
a cette classe. Nous étudions donc la classe des formules Horn étendues
simples qui est une restriction de la classe pécédente pour laquelle Swami-
nathan et Wagner ont proposé un algorithme de reconnaissance quadra-
tique. Une étude de la structure de ces formules nous permet de proposer
un algorithme de reconnaissance linéaire.

Le résultat de plus original de ce travail est la présentation de la
classe des formules ordonnées. Cette classe étend de fagon naturelle celle
des formules de Horn, en préservant les propriétés relatives a la réso-
lution unitaire (SAT, génération de modéles). De plus, nous proposons
un algorithme quadratique permettant de déterminer si une formule est
ordonnée-renommable. En outre nous présentons la classe des formules
presque ordonnées qui englobe les formules ordonnées-renommables. Ces
formules peuvent étre reconnues en temps polynémial et on peut aussi
générer leurs modéles en n’utilisant que la résolution unitaire, & condition
de disposer d’un ordre convenable sur les variables.

Mots-clés: Logique propositionnelle, probléeme SAT), satisfaisabilité, gé-
nération, délai polynomial, formules ordonnées, algorithmique, Horn, ré-
solution unitaire.

Abstract

This work deals with classes of propositional CNF formulas for which
it is possible to generate solutions efficiently (i.e. with a polynomial delay
between any two consecutive solutions).

127

We present a generic algorithm for the generation of the models of any
formula. Then we show that our algorithm generates with polynomial
delay the models of any formula belonging to the main classes for which a
polynomial algorithm for the satisfiability problem is known. This study
leads us to focus on classes of formulas for which unit resolution is the
only tool required for the generation.

We study the class of extended Horn formulas introduced by Chandru
and Hooker. Unfortunately, no polynomial time algorithm is known for
determining whether a formula belongs to this class. That is why we
study the class of simple extended Horn formulas which is a subclass
of the extended Horn formulas presented by Swaminathan and Wagner.
They give a quadratic time recognition algorithm. Our study permits to
present a linear time recognition algorithm.

But the most original result of this work is the presentation of the
class of ordered formulas. This class extends Horn on a natural way, pre-
serving properties concerning unit resolution. (satisfiability, polynomial
time generation). Moreover, we propose a quadratic time algorithm for
the recognition of ordered-renamable formulas. Finally, we present the
class of almost ordered formulas which includes the ordered-renamables
formulas. These formulas can be recognized in polynomial time, and,
provided that the variable are suitably ordered, one can generate with
polynomial delay the models of almost ordered formulas.

Keywords: Propositionnal logic, problem SAT, satisfiability, genera-
tion, polynomial delai, ordered formulas, algorithmic, Horn, unit resolu-
tion.

128

