Arithmetic in Hexadecimal II: SOLUTIONS
The following table presents the hexadecimal multiplication table. You can not learn it by heart, but you could print it out.
Multiplication
Execute the following multiplications in hexadecimal
- A123H*50H
A123 H X 50 H -------- 325AF0 H
- 1E3E4EH*EEEH
1E3E4E H X EEE H ------------ 1A76844 + 1A76844- +1A76844-- ------------ 1C38E3084 H
- FFFH*3H
FFF H X 3 H ------ 2FFD H
- C123CH*CCCH
C123C H X CCC H ---------- 90DAD0 + 90DAD0- +90DAD0-- --------- 9A7957D0 H
Logical operations
In programming, we will extend the logical operations AND, OR, XOR to arrays of bits.For instance the AND operator :
1011 0101B AND 1110 1110B --------- 1010 0100B
Compute the following results using the logical operators on arrays of bits
- 1001 1110B AND 0011 1001B = 0001 1000 B
- 0111 1101B AND 1111 0000B = 0111 0000 B
- 1100 1001B AND 1111 0010B = 1100 0000 B
- 1111 1001B AND 1011 0100B = 1011 0000 B
- 0000 1000B AND 1101 1000B = 0000 1000 B
- 1001 1110B OR 0011 1001B = 1011 1111 B
- 0111 1101B OR 1111 0000B = 1111 1101 B
- 1100 1001B OR 1111 0010B = 1111 1010 B
- 1111 1001B OR 1011 0100B = 1111 1101 B
- 0000 1000B OR 1101 1000B = 1101 1000 B
- 1001 1110B XOR 0011 1001B = 1010 0111 B
- 0111 1101B XOR 1111 0000B = 1000 1101 B
- 1100 1001B XOR 1111 0010B = 0011 1010 B
- 1111 1001B XOR 1011 0100B = 0100 1101 B
- 0000 1000B XOR 1101 1000B = 1101 0000 B
- NOT 0000 1010B = 1111 0101 B
- NOT 1010 1110B = 0101 0001 B
- NOT 0001 1110B = 1110 0001 B
- NOT 1111 0000B = 0000 1111 B
The following exercise is the same as the previous one, using binary operators on hexadecimal numbers. They must be seen as arrays of bits.
For the following exercise, we need a table of conversion between hexa and binary. This table has to be learnt.
0H | 0000B |
1H | 0001B |
2H | 0010B |
3H | 0011B |
4H | 0100B |
5H | 0101B |
6H | 0110B |
7H | 0111B |
8H | 1000B |
9H | 1001B |
AH | 1010B |
BH | 1011B |
CH | 1100B |
DH | 1101B |
EH | 1110B |
FH | 1111B |
- A1H AND 0011 1001B = 21B
- AAH AND 1111 0000B = A0H
- ACH AND FFH = ACH
- 10H AND 35H = 10H
- 5CH AND 3FH = 1CH
- EEH OR 0011 1001B = FFH
- E0H OR 1111 0000B = F0H
- FCH OR 00H = FCH
- CFH OR D0H = DFH
- 35H OR 57H = 77H
- DFH XOR 0011 1001B = 1110 0110 B = E6H
- D1H XOR 1111 0000B = 0010 0001 B = 21H
- EDH XOR 00H = EDH
- B0H XOR D0H = 60H
- 26H XOR 57H = 71H
- NOT 29H = D6H
- NOT 09H = F6H
- NOT FFH = 00H
- NOT 01H = FEH
Related Pages
Contact
Prof. Dr. Emmanuel Benoist
Berner Fachhochschule - TI
Quellgasse 21
CH-2501 Biel/Bienne
Switzerland
Mail: emmanuel.benoist (at) bfh.ch
Berner Fachhochschule - TI
Quellgasse 21
CH-2501 Biel/Bienne
Switzerland
Mail: emmanuel.benoist (at) bfh.ch
Social Networks
Follow
me
on
Linkedin, Scholar
& Research gate